中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 40 Issue 4
Apr.  2024
Turn off MathJax
Article Contents

Advances in the application of microspheres and nanoparticles in transcatheter arterial chemoembolization for the treatment of hepatocellular carcinoma

DOI: 10.12449/JCH240428
Research funding:

National Natural Science Foundation of China (82273074)

More Information
  • Corresponding author: YANG Tian, yangtian6666@hotmail.com (ORCID: 0000-0003-1544-0976)
  • Received Date: 2023-07-25
  • Accepted Date: 2023-08-10
  • Published Date: 2024-04-25
  • In recent years, transcatheter arterial chemoembolization (TACE) has emerged as a common treatment modality for the treatment of hepatocellular carcinoma (HCC). However, with the ongoing development of embolic agent techniques, the new advances in microspheres and nanoparticles have brought new hope for improving the efficacy and safety of TACE. This article reviews the latest advances and applications of microspheres and nanoparticles in TACE for HCC. First, this article introduces the background of TACE as a therapeutic approach and the emergence of microsphere and nanoparticle techniques, and then it describes the application of various types of microspheres and nanoparticles in TACE and discusses the requisite attributes of an ideal embolic agents. The article focuses on the advances in material science and engineering, as well as the clinical efficacy of drug-eluting microspheres and nanoparticles versus conventional TACE. Furthermore, it discusses the importance of radiological examination in TACE and summarizes the research advances in the radiopaque and magnetic resonance-visible embolic agents. This article also explores the future development directions and challenges of TACE. It also points out the combination of microspheres and nanoparticles with other treatment modalities, the application of personalized and precision medicine in TACE, and the potential regimen of TACE in clinical translation, and meanwhile, it raises the issues of ethics and regulation that need to be further discussed. It is believed that microspheres and nanoparticles have a potential effect in TACE, which provides a theoretical basis and technical support for innovating HCC treatment regimens and improving the prognosis of patients through TACE interventions.

     

  • loading
  • [1]
    LIU ZL, SUN YZ, ZHEN HF, et al. Network pharmacology integrated with transcriptomics deciphered the potential mechanism of Codonopsis pilosula against hepatocellular carcinoma[J]. Evid Based Complement Alternat Med, 2022, 2022: 1340194. DOI: 10.1155/2022/1340194.
    [2]
    ABOUGHALEB IH, MATBOLI M, SHAWKY SM, et al. Integration of transcriptomes analysis with spectral signature of total RNA for generation of affordable remote sensing of Hepatocellular carcinoma in serum clinical specimens[J]. Heliyon, 2021, 7( 3): e06388. DOI: 10.1016/j.heliyon.2021.e06388.
    [3]
    KIRSTEIN MM, WIRTH TC. Multimodal treatment of hepatocellular carcinoma[J]. Internist(Berl), 2020, 61( 2): 164- 169. DOI: 10.1007/s00108-019-00722-x.
    [4]
    HELLER M, PARIKH ND, FIDELMAN N, et al. Frontiers of therapy for hepatocellular carcinoma[J]. Abdom Radiol(NY), 2021, 46( 8): 3648- 3659. DOI: 10.1007/s00261-021-03065-0.
    [5]
    TAN DJH, WONG C, NG CH, et al. A meta-analysis on the rate of hepatocellular carcinoma recurrence after liver transplant and associations to etiology, alpha-fetoprotein, income and ethnicity[J]. J Clin Med, 2021, 10( 2): 238. DOI: 10.3390/jcm10020238.
    [6]
    SANTOPAOLO F, LENCI I, MILANA M, et al. Liver transplantation for hepatocellular carcinoma: Where do we stand?[J]. World J Gastroenterol, 2019, 25( 21): 2591- 2602. DOI: 10.3748/wjg.v25.i21.2591.
    [7]
    SINGAL AG, LLOVET JM, YARCHOAN M, et al. AASLD practice guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma[J]. Hepatology, 2023, 78( 6): 1922- 1965. DOI: 10.1097/HEP.0000000000000466.
    [8]
    NEVOLA R, RUOCCO R, CRISCUOLO L, et al. Predictors of early and late hepatocellular carcinoma recurrence[J]. World J Gastroenterol, 2023, 29( 8): 1243- 1260. DOI: 10.3748/wjg.v29.i8.1243.
    [9]
    YU ZY, YANG SY, LI JQ, et al. Current developmental status of non-surgical treatment of hepatocellular carcinoma[J]. J Clin Hepatol, 2021, 37( 5): 1205- 1207. DOI: 10.3969/j.issn.1001-5256.2021.05.048.

    于志远, 杨诗语, 李佳启, 等. 肝细胞癌非手术治疗的发展现状[J]. 临床肝胆病杂志, 2021, 37( 5): 1205- 1207. DOI: 10.3969/j.issn.1001-5256.2021.05.048.
    [10]
    LENCIONI R, DE BAERE T, SOULEN MC, et al. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: A systematic review of efficacy and safety data[J]. Hepatology, 2016, 64( 1): 106- 116. DOI: 10.1002/hep.28453.
    [11]
    PENG QJ, DAI T, XIE GB, et al. Research advances in transcatheter arterial chemoembolization combined with targeted agents or anti-PD-1/PD-L1 monoclonal antibody in treatment of patients with unresectable hepatocellular carcinoma[J]. J Clin Hepatol, 2023, 39( 7): 1740- 1746. DOI: 10.3969/j.issn.1001-5256.2023.07.033.

    彭秋菊, 戴涛, 谢贵波, 等. 不可切除肝细胞癌的经肝动脉化疗栓塞术联合靶向药物或程序性死亡受体1及其配体单抗治疗进展[J]. 临床肝胆病杂志, 2023, 39( 7): 1740- 1746. DOI: 10.3969/j.issn.1001-5256.2023.07.033.
    [12]
    XU JS, CHENG XQ, TAN LF, et al. Microwave responsive nanoplatform via P-selectin mediated drug delivery for treatment of hepatocellular carcinoma with distant metastasis[J]. Nano Lett, 2019, 19( 5): 2914- 2927. DOI: 10.1021/acs.nanolett.8b05202.
    [13]
    LADJU RB, ULHAQ ZS, SORAYA GV. Nanotheranostics: A powerful next-generation solution to tackle hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28( 2): 176- 187. DOI: 10.3748/wjg.v28.i2.176.
    [14]
    REN ZG, CHEN XM, HONG LJ, et al. Nanoparticle conjugation of ginsenoside Rg3 inhibits hepatocellular carcinoma development and metastasis[J]. Small, 2020, 16( 2): e1905233. DOI: 10.1002/smll.201905233.
    [15]
    KANG T, ZHU QQ, WEI D, et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis[J]. ACS Nano, 2017, 11( 2): 1397- 1411. DOI: 10.1021/acsnano.6b06477.
    [16]
    MIN YZ, ROCHE KC, TIAN SM, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy[J]. Nat Nanotechnol, 2017, 12( 9): 877- 882. DOI: 10.1038/nnano.2017.113.
    [17]
    WANG DW, WU QR, GUO R, et al. Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization[J]. Nanoscale, 2021, 13( 19): 8817- 8836. DOI: 10.1039/d1nr01268a.
    [18]
    ZHANG YC, WANG MZ, HAN XW, et al. Safety and efficacy of camrelizumab added to second-line therapy after drug-eluting bead transarterial chemoembolization combined with apatinib for unresectable hepatocellular carcinoma[J]. J Clin Hepatol, 2023, 39( 4): 834- 842. DOI: 10.3969/j.issn.1001-5256.2023.04.014.

    张延藏, 王满周, 韩新巍, 等. 载药栓塞微球经肝动脉化疗栓塞术联合阿帕替尼治疗不可切除肝癌后二线追加卡瑞利珠单抗的安全性和有效性分析[J]. 临床肝胆病杂志, 2023, 39( 4): 834- 842. DOI: 10.3969/j.issn.1001-5256.2023.04.014.
    [19]
    BAKRANIA A, ZHENG G, BHAT M. Nanomedicine in hepatocellular carcinoma: A new frontier in targeted cancer treatment[J]. Pharmaceutics, 2021, 14( 1): 41. DOI: 10.3390/pharmaceutics14010041.
    [20]
    JIA GR, van VALKENBURGH J, CHEN AZ, et al. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2022, 14( 2): e1749. DOI: 10.1002/wnan.1749.
    [21]
    LAMMER J, MALAGARI K, VOGL T, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: Results of the PRECISION V study[J]. Cardiovasc Intervent Radiol, 2010, 33( 1): 41- 52. DOI: 10.1007/s00270-009-9711-7.
    [22]
    GOLFIERI R, GIAMPALMA E, RENZULLI M, et al. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma[J]. Br J Cancer, 2014, 111( 2): 255- 264. DOI: 10.1038/bjc.2014.199.
    [23]
    ZHANG ZS, LI HZ, MA C, et al. Conventional versus drug-eluting beads chemoembolization for infiltrative hepatocellular carcinoma: A comparison of efficacy and safety[J]. BMC Cancer, 2019, 19( 1): 1162. DOI: 10.1186/s12885-019-6386-6.
    [24]
    LE BQG, DOAN TLH. Trend in biodegradable porous nanomaterials for anticancer drug delivery[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2023, 15( 4): e1874. DOI: 10.1002/wnan.1874.
    [25]
    WU G, HUI XD, HU LH, et al. Recent advancement of bioinspired nanomaterials and their applications: A review[J]. Front Bioeng Biotechnol, 2022, 10: 952523. DOI: 10.3389/fbioe.2022.952523.
    [26]
    GIRI TK, CHOUDHARY C, AJAZUDDIN, et al. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery[J]. Saudi Pharm J, 2013, 21( 2): 125- 141. DOI: 10.1016/j.jsps.2012.05.009.
    [27]
    DELICQUE J, GUIU B, BOULIN M, et al. Liver chemoembolization of hepatocellular carcinoma using TANDEM® microspheres[J]. Future Oncol, 2018, 14( 26): 2761- 2772. DOI: 10.2217/fon-2018-0237.
    [28]
    LEWIS AL, HALL B. Toward a better understanding of the mechanism of action for intra-arterial delivery of irinotecan from DC Bead(TM)(DEBIRI)[J]. Future Oncol, 2019, 15( 17): 2053- 2068. DOI: 10.2217/fon-2019-0071.
    [29]
    LEI Q, ZHAO J, HE F, et al. Preparation of poly(ionic liquid) microbeads via cooling-assisted phase separation method[J]. Macromol Rapid Commun, 2021, 42( 17): e2100275. DOI: 10.1002/marc.202100275.
    [30]
    WANG JM, JANSEN JA, YANG F. Electrospraying: Possibilities and challenges of engineering carriers for biomedical applications-a mini review[J]. Front Chem, 2019, 7: 258. DOI: 10.3389/fchem.2019.00258.
    [31]
    ISHIKAWA T. Prevention of post-embolization syndrome after transarterial chemoembolization for hepatocellular carcinoma-is prophylactic dexamethasone useful, or not?[J]. Hepatobiliary Surg Nutr, 2018, 7( 3): 214- 216. DOI: 10.21037/hbsn.2018.03.08.
    [32]
    IDÉE JM, GUIU B. Use of Lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: A review[J]. Crit Rev Oncol Hematol, 2013, 88( 3): 530- 549. DOI: 10.1016/j.critrevonc.2013.07.003.
    [33]
    XIE Y, QI X, XU K, et al. Transarterial infusion of iRGD-modified ZrO2 nanoparticles with lipiodol improves the tissue distribution of doxorubicin and its antitumor efficacy[J]. J Vasc Interv Radiol, 2019, 30( 12): 2026- 2035.e2. DOI: 10.1016/j.jvir.2019.04.014.
    [34]
    XUE HY, YU ZY, LIU Y, et al. Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma[J]. Int J Nanomedicine, 2017, 12: 5271- 5287. DOI: 10.2147/IJN.S135306.
    [35]
    LEE SY, CHOI JW, LEE JY, et al. Hyaluronic acid/doxorubicin nanoassembly-releasing microspheres for the transarterial chemoembolization of a liver tumor[J]. Drug Deliv, 2018, 25( 1): 1472- 1483. DOI: 10.1080/10717544.2018.1480673.
    [36]
    LI GP, YE L, PAN JS, et al. Antitumoural hydroxyapatite nanoparticles-mediated hepatoma-targeted trans-arterial embolization gene therapy: in vitro and in vivo studies[J]. Liver Int, 2012, 32( 6): 998- 1007. DOI: 10.1111/j.1478-3231.2012.02761.x.
    [37]
    FANG Y, ZHENG GF, YANG JP, et al. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery[J]. Angew Chem Int Ed Engl, 2014, 53( 21): 5366- 5370. DOI: 10.1002/anie.201402002.
    [38]
    WHITESIDES GM. The origins and the future of microfluidics[J]. Nature, 2006, 442( 7101): 368- 373. DOI: 10.1038/nature05058.
    [39]
    ROZYNEK Z, BIELAS R, JÓZEFCZAK A. Correction: Efficient formation of oil-in-oil Pickering emulsions with narrow size distributions by using electric fields[J]. Soft Matter, 2019, 15( 7): 1692. DOI: 10.1039/c9sm90016k.
    [40]
    WU ST, FAN K, YANG Q, et al. Smart nanoparticles and microbeads for interventional embolization therapy of liver cancer: State of the art[J]. J Nanobiotechnology, 2023, 21( 1): 42. DOI: 10.1186/s12951-023-01804-7.
    [41]
    FACCIORUSSO A. Drug-eluting beads transarterial chemoembolization for hepatocellular carcinoma: Current state of the art[J]. World J Gastroenterol, 2018, 24( 2): 161- 169. DOI: 10.3748/wjg.v24.i2.161.
    [42]
    GANGLOFF N, ULBRICHT J, LORSON T, et al. Peptoids and polypeptoids at the frontier of supra- and macromolecular engineering[J]. Chem Rev, 2016, 116( 4): 1753- 1802. DOI: 10.1021/acs.chemrev.5b00201.
    [43]
    LEE Y, THOMPSON DH. Stimuli-responsive liposomes for drug delivery[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2017, 9( 5): 10.1002/wnan. 1450. DOI: 10.1002/wnan.1450.
    [44]
    MURA S, NICOLAS J, COUVREUR P. Stimuli-responsive nanocarriers for drug delivery[J]. Nat Mater, 2013, 12( 11): 991- 1003. DOI: 10.1038/nmat3776.
    [45]
    WU BL, ZHOU J, LING GH, et al. CalliSpheres drug-eluting beads versus lipiodol transarterial chemoembolization in the treatment of hepatocellular carcinoma: A short-term efficacy and safety study[J]. World J Surg Oncol, 2018, 16( 1): 69. DOI: 10.1186/s12957-018-1368-8.
    [46]
    BZEIZI KI, ARABI M, JAMSHIDI N, et al. Conventional transarterial chemoembolization versus drug-eluting beads in patients with hepatocellular carcinoma: A systematic review and meta-analysis[J]. Cancers, 2021, 13( 24): 6172. DOI: 10.3390/cancers13246172.
    [47]
    ZENG J, LI L, ZHANG HS, et al. Radiopaque and uniform alginate microspheres loaded with tantalum nanoparticles for real-time imaging during transcatheter arterial embolization[J]. Theranostics, 2018, 8( 17): 4591- 4600. DOI: 10.7150/thno.27379.
    [48]
    HU JJ, ALBADAWI H, CHONG BW, et al. Advances in biomaterials and technologies for vascular embolization[J]. Adv Mater, 2019, 31( 33): e1901071. DOI: 10.1002/adma.201901071.
    [49]
    TACHER V, DURAN R, LIN MD, et al. Multimodality imaging of ethiodized oil-loaded radiopaque microspheres during transarterial embolization of rabbits with VX2 liver tumors[J]. Radiology, 2016, 279( 3): 741- 753. DOI: 10.1148/radiol.2015141624.
    [50]
    MONDINI M, LEVY A, MEZIANI L, et al. Radiotherapy-immunotherapy combinations-perspectives and challenges[J]. Mol Oncol, 2020, 14( 7): 1529- 1537. DOI: 10.1002/1878-0261.12658.
    [51]
    DHONDT E, LAMBERT B, HERMIE L, et al. 90Y radioembolization versus drug-eluting bead chemoembolization for unresectable hepatocellular carcinoma: Results from the TRACE phase II randomized controlled trial[J]. Radiology, 2022, 303( 3): 699- 710. DOI: 10.1148/radiol.211806.
    [52]
    FAN WZ, WU YQ, LU MJ, et al. A meta-analysis of the efficacy and safety of iodine[131I]metuximab infusion combined with TACE for treatment of hepatocellular carcinoma[J]. Clin Res Hepatol Gastroenterol, 2019, 43( 4): 451- 459. DOI: 10.1016/j.clinre.2018.09.006.
    [53]
    LEE KH, LIAPI E, VOSSEN JA, et al. Distribution of iron oxide-containing Embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: Evaluation with MR imaging and implication for therapy[J]. J Vasc Interv Radiol, 2008, 19( 10): 1490- 1496. DOI: 10.1016/j.jvir.2008.06.008.
    [54]
    VAN ELK M, OZBAKIR B, BARTEN-RIJBROEK AD, et al. Alginate microspheres containing temperature sensitive liposomes(TSL) for MR-guided embolization and triggered release of doxorubicin[J]. PLoS One, 2015, 10( 11): e0141626. DOI: 10.1371/journal.pone.0141626.
    [55]
    DASH A, PILLAI MRA, KNAPP FF JR. Production of(177)Lu for targeted radionuclide therapy: Available options[J]. Nucl Med Mol Imaging, 2015, 49( 2): 85- 107. DOI: 10.1007/s13139-014-0315-z.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (363) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return