中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

The role of tumor necrosis factor-α in the development and progression of hepatocellular carcinoma

DOI: 10.12449/JCH241129
Research funding:

Central University Excellent Youth Team Cultivation Project (31920220065);

Gansu Province Health Industry Scientific Research Plan Project Contract (GSWSKY2022-76);

Gansu Planning Project on Science and Technology (23JRRA1673)

More Information
  • Corresponding author: HE Yujing, heyujing2019@163.com (ORCID: 0009-0000-5577-6867); ZHANG Jiucong, zhangjiucong@163.com (ORCID: 0000-0003-4006-3033)
  • Received Date: 2024-01-27
  • Accepted Date: 2024-03-15
  • Published Date: 2024-11-25
  • Tumor necrosis factor-α (TNF-α) is involved in the regulation of multiple biological processes such as the proliferation, invasion, migration, and chemotherapy resistance of hepatocellular carcinoma (HCC) cells through TNF receptor-mediated signaling pathways. At the same time, TNF-α also plays a role in inducing the apoptosis of HCC cells. Some TNF-α inhibitors have been shown to inhibit the progression of HCC and prolong survival time. At present, the potential mechanism of action of TNF-α in HCC remains unclear, and exploration of the interaction between TNF-α and HCC can help to determine the potential therapeutic targets for HCC. This article summarizes the latest research advances in the mechanism of action of TNF-α in HCC and introduces the possibility of targeting TNF-α as a treatment method for HCC, in order to provide a theoretical basis for the prevention and treatment of liver cancer and drug research and development.

     

  • [1]
    CHEN YX, WEN HH, ZHOU C, et al. TNF-α derived from M2 tumor-associated macrophages promotes epithelial-mesenchymal transition and cancer stemness through the Wnt/β‍-catenin pathway in SMMC-7721 hepatocellular carcinoma cells[J]. Exp Cell Res, 2019, 378( 1): 41- 50. DOI: 10.1016/j.yexcr.2019.03.005.
    [2]
    JANG MK, KIM HS, CHUNG YH. Clinical aspects of tumor necrosis factor-α signaling in hepatocellular carcinoma[J]. Curr Pharm Des, 2014, 20( 17): 2799- 2808. DOI: 10.2174/13816128113199990587.
    [3]
    TIEGS G, HORST AK. TNF in the liver: Targeting a central player in inflammation[J]. Semin Immunopathol, 2022, 44( 4): 445- 459. DOI: 10.1007/s00281-022-00910-2.
    [4]
    TSENG WC, LAI HC, HUANG YH, et al. Tumor necrosis factor alpha: Implications of anesthesia on cancers[J]. Cancers, 2023, 15( 3): 739. DOI: 10.3390/cancers15030739.
    [5]
    LAHA D, GRANT R, MISHRA P, et al. The role of tumor necrosis factor in manipulating the immunological response of tumor microenvironment[J]. Front Immunol, 2021, 12: 656908. DOI: 10.3389/fimmu.2021.656908.
    [6]
    COUSSENS LM, WERB Z. Inflammation and cancer[J]. Nature, 2002, 420( 6917): 860- 867. DOI: 10.1038/nature01322.
    [7]
    WANG X, LIN Y. Tumor necrosis factor and cancer, buddies or foes?[J]. Acta Pharmacol Sin, 2008, 29( 11): 1275- 1288. DOI: 10.1111/j.1745-7254.2008.00889.x.
    [8]
    KALLIOLIAS GD, IVASHKIV LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies[J]. Nat Rev Rheumatol, 2016, 12( 1): 49- 62. DOI: 10.1038/nrrheum.2015.169.
    [9]
    CHEN AY, WOLCHOK JD, BASS AR. TNF in the era of immune checkpoint inhibitors: Friend or foe?[J]. Nat Rev Rheumatol, 2021, 17( 4): 213- 223. DOI: 10.1038/s41584-021-00584-4.
    [10]
    MERCOGLIANO MF, BRUNI S, MAURO F, et al. Harnessing tumor necrosis factor alpha to achieve effective cancer immunotherapy[J]. Cancers, 2021, 13( 3): 564. DOI: 10.3390/cancers13030564.
    [11]
    JING YY, SUN K, LIU WT, et al. Tumor necrosis factor-α promotes hepatocellular carcinogenesis through the activation of hepatic progenitor cells[J]. Cancer Lett, 2018, 434: 22- 32. DOI: 10.1016/j.canlet.2018.07.001.
    [12]
    YANG X, SHAO CC, DUAN LX, et al. Oncostatin M promotes hepatic progenitor cell activation and hepatocarcinogenesis via macrophage-derived tumor necrosis factor-α[J]. Cancer Lett, 2021, 517: 46- 54. DOI: 10.1016/j.canlet.2021.05.039.
    [13]
    XIA LM, MO P, HUANG WJ, et al. The TNF-α/ROS/HIF-1-induced upregulation of FoxMI expression promotes HCC proliferation and resistance to apoptosis[J]. Carcinogenesis, 2012, 33( 11): 2250- 2259. DOI: 10.1093/carcin/bgs249.
    [14]
    XU ZW, YAN SX, WU HX, et al. The influence of TNF-α and Ang II on the proliferation, migration and invasion of HepG2 cells by regulating the expression of GRK2[J]. Cancer Chemother Pharmacol, 2017, 79( 4): 747- 758. DOI: 10.1007/s00280-017-3267-z.
    [15]
    XU ZW, YAN SX, WU HX, et al. Angiotensin II and tumor necrosis factor-α stimulate the growth, migration and invasion of BEL-7402 cells via down-regulation of GRK2 expression[J]. Dig Liver Dis, 2019, 51( 2): 263- 274. DOI: 10.1016/j.dld.2018.06.007.
    [16]
    SHI JN, SONG SP, LI SX, et al. TNF-α/NF-κB signaling epigenetically represses PSD4 transcription to promote alcohol-related hepatocellular carcinoma progression[J]. Cancer Med, 2021, 10( 10): 3346- 3357. DOI: 10.1002/cam4.3832.
    [17]
    ZHANG GP, YUE X, LI SQ. Cathepsin C interacts with TNF-α/p38 MAPK signaling pathway to promote proliferation and metastasis in hepatocellular carcinoma[J]. Cancer Res Treat, 2020, 52( 1): 10- 23. DOI: 10.4143/crt.2019.145.
    [18]
    ZONG C, MENG Y, YE F, et al. AIF1+CSF1R+MSCs, induced by TNF-α, act to generate an inflammatory microenvironment and promote hepatocarcinogenesis[J]. Hepatology, 2023, 78( 2): 434- 451. DOI: 10.1002/hep.32738.
    [19]
    MENG Y, ZHAO QD, AN LW, et al. A TNFR2-hnRNPK axis promotes primary liver cancer development via activation of YAP signaling in hepatic progenitor cells[J]. Cancer Res, 2021, 81( 11): 3036- 3050. DOI: 10.1158/0008-5472.CAN-20-3175.
    [20]
    QI DD, LU M, XU PF, et al. Transcription factor ETV4 promotes the development of hepatocellular carcinoma by driving hepatic TNF-α signaling[J]. Cancer Commun, 2023, 43( 12): 1354- 1372. DOI: 10.1002/cac2.12482.
    [21]
    LIU ZC, NING F, WANG HF, et al. Epidermal growth factor and tumor necrosis factor α cooperatively promote the motility of hepatocellular carcinoma cell lines via synergistic induction of fibronectin by NF-κB/p65[J]. Biochim Biophys Acta Gen Subj, 2017, 1861( 11 Pt A): 2568- 2582. DOI: 10.1016/j.bbagen.2017.08.010.
    [22]
    KASTL L, SAUER SW, RUPPERT T, et al. TNF-α mediates mitochondrial uncoupling and enhances ROS-dependent cell migration via NF-κB activation in liver cells[J]. FEBS Lett, 2014, 588( 1): 175- 183. DOI: 10.1016/j.febslet.2013.11.033.
    [23]
    HUANG BP, LIN CS, WANG CJ, et al. Upregulation of heat shock protein 70 and the differential protein expression induced by tumor necrosis factor-alpha enhances migration and inhibits apoptosis of hepatocellular carcinoma cell HepG2[J]. Int J Med Sci, 2017, 14( 3): 284- 293. DOI: 10.7150/ijms.17861.
    [24]
    ZHU Y, CHENG Y, GUO YB, et al. Protein kinase D2 contributes to TNF-α-induced epithelial mesenchymal transition and invasion via the PI3K/GSK-3β/β-catenin pathway in hepatocellular carcinoma[J]. Oncotarget, 2016, 7( 5): 5327- 5341. DOI: 10.18632/oncotarget.6633.
    [25]
    SHRESTHA R, BRIDLE KR, CRAWFORD DHG, et al. TNF-α-mediated epithelial-to-mesenchymal transition regulates expression of immune checkpoint molecules in hepatocellular carcinoma[J]. Mol Med Rep, 2020, 21( 4): 1849- 1860. DOI: 10.3892/mmr.2020.10991.
    [26]
    DASH S, SARASHETTI PM, RAJASHEKAR B, et al. TGF-β2-induced EMT is dampened by inhibition of autophagy and TNF-α treatment[J]. Oncotarget, 2018, 9( 5): 6433- 6449. DOI: 10.18632/oncotarget.23942.
    [27]
    TAN WL, LUO X, LI WD, et al. TNF-α is a potential therapeutic target to overcome sorafenib resistance in hepatocellular carcinoma[J]. EBioMedicine, 2019, 40: 446- 456. DOI: 10.1016/j.ebiom.2018.12.047.
    [28]
    ZHOU C, SUN BY, ZHOU PY, et al. MAIT cells confer resistance to Lenvatinib plus anti-PD1 antibodies in hepatocellular carcinoma through TNF-TNFRSF1B pathway[J]. Clin Immunol, 2023, 256: 109770. DOI: 10.1016/j.clim.2023.109770.
    [29]
    LI N, WANG JN, ZHANG N, et al. Cross-talk between TNF-α and IFN-γ signaling in induction of B7-H1 expression in hepatocellular carcinoma cells[J]. Cancer Immunol Immunother, 2018, 67( 2): 271- 283. DOI: 10.1007/s00262-017-2086-8.
    [30]
    ZHAO L, JIN Y, YANG C, et al. HBV-specific CD8 T cells present higher TNF-α expression but lower cytotoxicity in hepatocellular carcinoma[J]. Clin Exp Immunol, 2020, 201( 3): 289- 296. DOI: 10.1111/cei.13470.
    [31]
    ZHENG XX, CHEN XD, WU WC. The regulatory axis of PD-L1 isoform 2/TNF/T cell proliferation is required for the canonical immune-suppressive effects of PD-L1 isoform 1 in liver cancer[J]. Int J Mol Sci, 2023, 24( 7): 6314. DOI: 10.3390/ijms24076314.
    [32]
    TOKAY E, SAGKAN RI, KOCKAR F. TNF-α induces URG-4/URGCP gene expression inHepatoma cells through starvation dependent manner[J]. Biochem Genet, 2021, 59( 1): 300- 314. DOI: 10.1007/s10528-020-09972-z.
    [33]
    KOU XR, JING YY, DENG WJ, et al. Tumor necrosis factor-α attenuates starvation-induced apoptosis through upregulation of ferritin heavy chain in hepatocellular carcinoma cells[J]. BMC Cancer, 2013, 13: 438. DOI: 10.1186/1471-2407-13-438.
    [34]
    SUN QM, HU B, FU PY, et al. Long non-coding RNA 00607 as a tumor suppressor by modulating NF-κB p65/p53 signaling axis in hepatocellular carcinoma[J]. Carcinogenesis, 2018, 39( 12): 1438- 1446. DOI: 10.1093/carcin/bgy113.
    [35]
    LI D, FU J, DU M, et al. Hepatocellular carcinoma repression by TNFα-mediated synergistic lethal effect of mitosis defect-induced senescence and cell death sensitization[J]. Hepatology, 2016, 64( 4): 1105- 1120. DOI: 10.1002/hep.28637.
    [36]
    HOU JW, ZHAO RC, XIA WY, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis[J]. Nat Cell Biol, 2020, 22( 10): 1264- 1275. DOI: 10.1038/s41556-020-0575-z.
    [37]
    VERMA HK, MERCHANT N, BHASKAR LVKS. Tumor necrosis factor-alpha gene promoter(TNF-α G-308A) polymorphisms increase the risk of hepatocellular carcinoma in asians: A meta-analysis[J]. Crit Rev Oncog, 2020, 25( 1): 11- 20. DOI: 10.1615/CritRevOncog.2020034846.
    [38]
    LI HR, WANG YH, ZHANG M, et al. The high expression of TNF-α and NF-κB in tumor microenvironment predicts good prognosis of patients with BCLC-0-B hepatocellular carcinoma[J]. Transl Cancer Res, 2019, 8( 2): 532- 541. DOI: 10.21037/tcr.2019.03.09.
    [39]
    GUO DD, QIN L, SUN JP, et al. Dynamic changes of cytokine profiles and their correlation with tumor recurrence following thermal ablation in hepatocellular carcinoma[J]. Technol Cancer Res Treat, 2023, 22: 15330338231190644. DOI: 10.1177/15330338231190644.
    [40]
    LU MY, YEH ML, HUANG CI, et al. Dynamics of cytokines predicts risk of hepatocellular carcinoma among chronic hepatitis C patients after viral eradication[J]. World J Gastroenterol, 2022, 28( 1): 140- 153. DOI: 10.3748/wjg.v28.i1.140.
    [41]
    ZHANG M, HU J, LI HR, et al. High TNF-α and/or p38MAPK expression predicts a favourable prognosis in patients with T1N0M0 hepatocellular carcinoma: An immunohistochemical study[J]. Oncol Lett, 2019, 17( 6): 4948- 4956. DOI: 10.3892/ol.2019.10193.
    [42]
    IIDA-UENO A, ENOMOTO M, UCHIDA-KOBAYASHI S, et al. Changes in plasma interleukin-8 and tumor necrosis factor-α levels during the early treatment period as a predictor of the response to sorafenib in patients with unresectable hepatocellular carcinoma[J]. Cancer Chemother Pharmacol, 2018, 82( 5): 857- 864. DOI: 10.1007/s00280-018-3681-x.
    [43]
    BRENNER D, BLASER H, MAK TW. Regulation of tumour necrosis factor signalling: Live or let die[J]. Nat Rev Immunol, 2015, 15( 6): 362- 374. DOI: 10.1038/nri3834.
    [44]
    LI W, JIAN YB. Antitumor necrosis factor-α antibodies as a noveltherapy for hepatocellular carcinoma[J]. Exp Ther Med, 2018, 16( 2): 529- 536. DOI: 10.3892/etm.2018.6235.
    [45]
    LI K, LI XH, WU ZJ, et al. Adenovirus encoding XAF-1 and TNF-α in the same open reading frame efficiently inhibits hepatocellular cancer cells[J]. Mol Med Rep, 2016, 13( 6): 5169- 5176. DOI: 10.3892/mmr.2016.5193.
    [46]
    WANG HM, LIU JM, HU XM, et al. Prognostic and therapeutic values of tumor necrosis factor-alpha in hepatocellular carcinoma[J]. Med Sci Monit, 2016, 22: 3694- 3704. DOI: 10.12659/msm.899773.
    [47]
    WANG MD, WU MC, YANG T. The synergistic effect of sorafenib and TNF-α inhibitor on hepatocellular carcinoma[J]. EBioMedicine, 2019, 40: 11- 12. DOI: 10.1016/j.ebiom.2019.01.007.
    [48]
    LEONE GM, MANGANO K, PETRALIA MC, et al. Past, present and(foreseeable) future of biological anti-TNF alpha therapy[J]. J Clin Med, 2023, 12( 4): 1630. DOI: 10.3390/jcm12041630.
    [49]
    BAI L, WANG K. Research progress of immune-related adverse reactions caused by immune checkpoint inhibitors[J]. J Changchun Univ Chin Med, 2023, 39( 2): 229- 236. DOI: 10.13463/j.cnki.cczyy.2023.02.025.

    白黎, 王珂. 免疫检查点抑制剂导致免疫相关不良反应的研究进展[J]. 长春中医药大学学报, 2023, 39( 2): 229- 236. DOI: 10.13463/j.cnki.cczyy.2023.02.025.
    [50]
    FISCHER R, KONTERMANN RE, PFIZENMAIER K. Selective targeting of TNF receptors as a novel therapeutic approach[J]. Front Cell Dev Biol, 2020, 8: 401. DOI: 10.3389/fcell.2020.00401.
  • Relative Articles

    [1]Yishan HUO, Dawei LI, Xiangbing DUAN, Yuyu MA, Guojun ZHANG, Kainan ZHANG, Xiumin MA. Effect of Go-Ichi-Ni-San complex subunit 1 on disease progression and chemotherapy resistance in hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2025, 41(3): 485-492. doi: 10.12449/JCH250314
    [2]Professional Committee for Prevention and Control of Hepatobiliary and Pancreatic Diseases of Chinese Preventive Medicine Association, Chinese Society of Liver Cancer, Liver Study Group of Surgery Committee of Beijing Medical Association, et al. Expert consensus on the sequential surgery following conversion therapy based on the combination of immune checkpoint inhibitors and antiangiogenic targeted drugs for advanced hepatocellular carcinoma (2024 edition)[J]. Journal of Clinical Hepatology, 2025, 41(1): 30-40. doi: 10.3760/cma.j.cn113884-20240814-00245
    [3]Xiaohua ZHANG, Ying FENG, Xianbo WANG. Role of the Hedgehog signaling pathway in hepatocellular carcinoma and its tumor microenvironment[J]. Journal of Clinical Hepatology, 2024, 40(4): 822-827. doi: 10.12449/JCH240429
    [4]Long CHENG, Yue ZHANG, Yushen LIU, Zhaoqing DU, Zhaoyang GUO, Yangwei FAN, Ting LI, Xu GAO, Enrui XIE, Zixuan XING, Wenhua WU, Yinying WU, Mingbo YANG, Jie LI, Yu ZHANG, Wen KANG, Wenjun WANG, Fanpu JI, Jiang GUO, Ning GAO. Efficacy and safety of camrelizumab monoclonal antibody combined with molecular-targeted therapy in elderly patients with advanced hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2024, 40(10): 2034-2041. doi: 10.12449/JCH241017
    [5]Xing YANG, Shudi LI, Jiangkai LIU, Zhen WANG, Suling LI. Current research status of traditional Chinese medicine in the prevention and treatment of hepatocellular carcinoma by regulating the JAK/STAT signaling pathway[J]. Journal of Clinical Hepatology, 2023, 39(11): 2718-2729. doi: 10.3969/j.issn.1001-5256.2023.11.030
    [6]Rui SONG, Jing LI, Hongju YANG, Minyue LI, Jing YOU. Role of signal transducer and activator of transcription 1 in regulation of Treg/Th17 balance in hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2022, 38(11): 2627-2631. doi: 10.3969/j.issn.1001-5256.2022.11.038
    [7]Ningning ZHANG, Wei LU. Targeted therapy for hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2021, 37(8): 1753-1757. doi: 10.3969/j.issn.1001-5256.2021.08.003
    [8]Wei JianYing, Sun Wei, Liu XiaoMin, Chen JingLong. Advances in targeted therapy and immunotherapy for hepatocelluar carcinoma[J]. Journal of Clinical Hepatology, 2020, 36(10): 2320-2324. doi: 10.3969/j.issn.1001-5256.2020.10.035
    [9]Deng YangYang, Ge ShanFei, Yu YanQing, Xiong Ying. Cell signaling pathways associated with liver fibrosis and potential therapeutic strategies[J]. Journal of Clinical Hepatology, 2020, 36(5): 1141-1145. doi: 10.3969/j.issn.1001-5256.2020.05.043
    [10]Niu ChunYan, Zhao XiangYang. Hepatic macrophage-targeted therapy for fatty liver disease: Opportunities and challenges[J]. Journal of Clinical Hepatology, 2020, 36(6): 1393-1397. doi: 10.3969/j.issn.1001-5256.2020.06.045
    [11]DENG HaiMin, DUAN HuaXin. Current status of the research on targeted therapy for cholangiocarcinoma[J]. Journal of Clinical Hepatology, 2020, 36(12): 2856-2859. doi: 10.3969/j.issn.1001-5256.2020.12.046
    [12]Huang Shen, Yang ChengLei, Zhang ZhiMing. Research advances in targeted therapy for hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2019, 35(11): 2573-2577. doi: 10.3969/j.issn.1001-5256.2019.11.041
    [13]Chen WanYong, Ren Ning. Advances in molecular targeted therapy for hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2018, 34(7): 1387-1394. doi: 10.3969/j.issn.1001-5256.2018.07.005
    [14]Zhang QiuNan, Xiao Ying, Miao RuiXin, Zhang YaQing, Zhu Ying. Changes in intestinal flora in nonalcoholic fatty liver disease: their correlation with insulin resistance index,tumor necrosis factor- α,and interleukin- 6[J]. Journal of Clinical Hepatology, 2015, 31(7): 1078-1081. doi: 10.3969/j.issn.1001-5256.2015.07.019
    [15]Chi ZhaoChun, Geng ZhangXin. Application of tumor necrosis factor antagonists in hepatic disease treatment[J]. Journal of Clinical Hepatology, 2015, 31(7): 1176-1179. doi: 10.3969/j.issn.1001-5256.2015.07.045
    [16]Gao Jie, Xu ChunHai, Liang Ming, Yu JianWu, Li ShuChen. Effect of fibronectin on protection of rat hepatic stellate cells HSC-T6 from TRAIL-induced apoptosis[J]. Journal of Clinical Hepatology, 2011, 27(11): 1199-1202.
    [17]Zhu YingHua, Song HongLi, Zhang Yi, Yu Guang, Han JiJin. The Clinieal study about interleukin-1 and tumor necrosis factor Alpha in hepatocirrhosis[J]. Journal of Clinical Hepatology, 2001, 17(4): 233-234.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.4 %FULLTEXT: 23.4 %META: 71.6 %META: 71.6 %PDF: 5.0 %PDF: 5.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.2 %其他: 6.2 %其他: 0.2 %其他: 0.2 %Tiruchi: 0.2 %Tiruchi: 0.2 %上海: 9.7 %上海: 9.7 %东莞: 0.2 %东莞: 0.2 %临沂: 0.4 %临沂: 0.4 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %伊利诺伊州: 0.8 %伊利诺伊州: 0.8 %保定: 0.4 %保定: 0.4 %兰州: 0.4 %兰州: 0.4 %北京: 5.2 %北京: 5.2 %华盛顿州: 0.2 %华盛顿州: 0.2 %南宁: 1.0 %南宁: 1.0 %南昌: 0.2 %南昌: 0.2 %厦门: 0.6 %厦门: 0.6 %台州: 0.2 %台州: 0.2 %咸阳: 0.6 %咸阳: 0.6 %哥伦布: 0.4 %哥伦布: 0.4 %天津: 0.2 %天津: 0.2 %太原: 0.4 %太原: 0.4 %宁波: 0.4 %宁波: 0.4 %定西: 0.4 %定西: 0.4 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 0.6 %密蘇里城: 0.6 %山景城: 0.4 %山景城: 0.4 %常德: 0.6 %常德: 0.6 %广州: 0.8 %广州: 0.8 %庆阳: 0.2 %庆阳: 0.2 %延边: 0.2 %延边: 0.2 %开罗: 0.4 %开罗: 0.4 %张家口: 6.2 %张家口: 6.2 %成都: 0.6 %成都: 0.6 %拉斯维加斯: 0.4 %拉斯维加斯: 0.4 %昆明: 3.3 %昆明: 3.3 %杭州: 0.6 %杭州: 0.6 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.2 %沈阳: 0.2 %济南: 0.2 %济南: 0.2 %海得拉巴: 0.4 %海得拉巴: 0.4 %淄博: 0.2 %淄博: 0.2 %漯河: 0.4 %漯河: 0.4 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.2 %福州: 0.2 %科泽科德: 0.2 %科泽科德: 0.2 %芒廷维尤: 20.3 %芒廷维尤: 20.3 %芜湖: 0.4 %芜湖: 0.4 %芝加哥: 1.7 %芝加哥: 1.7 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.2 %莫斯科: 0.2 %西宁: 12.2 %西宁: 12.2 %诺沃克: 0.4 %诺沃克: 0.4 %贵阳: 0.4 %贵阳: 0.4 %赣州: 0.2 %赣州: 0.2 %运城: 0.8 %运城: 0.8 %郑州: 1.7 %郑州: 1.7 %重庆: 0.6 %重庆: 0.6 %金昌: 0.2 %金昌: 0.2 %长春: 13.7 %长春: 13.7 %长治: 0.2 %长治: 0.2 %其他其他Tiruchi上海东莞临沂乌鲁木齐伊利诺伊州保定兰州北京华盛顿州南宁南昌厦门台州咸阳哥伦布天津太原宁波定西宣城密蘇里城山景城常德广州庆阳延边开罗张家口成都拉斯维加斯昆明杭州武汉沈阳济南海得拉巴淄博漯河石家庄福州科泽科德芒廷维尤芜湖芝加哥苏州莫斯科西宁诺沃克贵阳赣州运城郑州重庆金昌长春长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (342) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return