| [1] |
KHURANA P, GUPTA A, SUGADEV R, et al. HAHmiR.DB: A server platform for high-altitude human miRNA-gene coregulatory networks and associated regulatory circuits[J]. Database(Oxford), 2020, 2020: baaa101. DOI: 10.1093/database/baaa101.
|
| [2] |
BIAN SZ, ZHANG JH, GAO XB, et al. Risk factors for high-altitude headache upon acute high-altitude exposure at 3 700 m in young Chinese men: A cohort study[J]. J Headache Pain, 2013, 14( 1): 35. DOI: 10.1186/1129-2377-14-35.
|
| [3] |
DONKOR N, GARDNER JJ, BRADSHAW JL, et al. Ocular inflammation and oxidative stress as a result of chronic intermittent hypoxia: A rat model of sleep apnea[J]. Antioxidants(Basel), 2024, 13( 7): 878. DOI: 10.3390/antiox13070878.
|
| [4] |
MIALET-PEREZ J, BELAIDI E. Interplay between hypoxia inducible Factor-1 and mitochondria in cardiac diseases[J]. Free Radic Biol Med, 2024, 221: 13- 22. DOI: 10.1016/j.freeradbiomed.2024.04.239.
|
| [5] |
ZHOU Y, HE LN, WANG LN, et al. Human amniotic mesenchymal stromal cell-derived exosomes promote neuronal function by inhibiting excessive apoptosis in a hypoxia/ischemia-induced cerebral palsy model: A preclinical study[J]. Biomed Pharmacother, 2024, 173: 116321. DOI: 10.1016/j.biopha.2024.116321.
|
| [6] |
MARTINEZ-CANTON M, GALVAN-ALVAREZ V, GALLEGO-SELLES A, et al. Activation of macroautophagy and chaperone-mediated autophagy in human skeletal muscle by high-intensity exercise in normoxia and hypoxia and after recovery with or without post-exercise ischemia[J]. Free Radic Biol Med, 2024, 222: 607- 624. DOI: 10.1016/j.freeradbiomed.2024.07.012.
|
| [7] |
ALSUP C, LIPMAN GS, POMERANZ D, et al. Interstitial pulmonary edema assessed by lung ultrasound on ascent to high altitude and slight association with acute mountain sickness: A prospective observational study[J]. High Alt Med Biol, 2019, 20( 2): 150- 156. DOI: 10.1089/ham.2018.0123.
|
| [8] |
LI WH, LI YX, REN J. High altitude hypoxia on brain ultrastructure of rats and Hsp70 expression changes[J]. Br J Neurosurg, 2019, 33( 2): 192- 195. DOI: 10.1080/02688697.2018.1519108.
|
| [9] |
FENG ZL, ZHAO T, CHENG X, et al. Effects of simulated high-altitude hypobaric hypoxia on cardiac structure and function in rats[J]. Chin J Appl Physiol, 2019, 35( 2): 173- 177, 4. DOI: 10.12047/j.cjap.5751.2019.038.
冯振龙, 赵彤, 成祥, 等. 模拟高原低压低氧环境对大鼠心脏结构和功能影响[J]. 中国应用生理学杂志, 2019, 35( 2): 173- 177, 4. DOI: 10.12047/j.cjap.5751.2019.038.
|
| [10] |
QU XY, YANG T, WANG X, et al. Macrophage RIPK3 triggers inflammation and cell death via the XBP1-Foxo1 axis in liver ischaemia-reperfusion injury[J]. JHEP Rep, 2023, 5( 11): 100879. DOI: 10.1016/j.jhepr.2023.100879.
|
| [11] |
WANG JH, AHN IS, FISCHER TD, et al. Autophagy suppresses age-dependent ischemia and reperfusion injury in livers of mice[J]. Gastroenterology, 2011, 141( 6): 2188- 2199. e 6. DOI: 10.1053/j.gastro.2011.08.005.
|
| [12] |
LIU JJ, HAO HJ, HUANG H, et al. Hypoxia regulates the therapeutic potential of mesenchymal stem cells through enhanced autophagy[J]. Int J Low Extrem Wounds, 2015, 14( 1): 63- 72. DOI: 10.1177/1534734615573660.
|
| [13] |
FAN WS, HAN D, SUN ZC, et al. Endothelial deletion of mTORC1 protects against hindlimb ischemia in diabetic mice via activation of autophagy, attenuation of oxidative stress and alleviation of inflammation[J]. Free Radic Biol Med, 2017, 108: 725- 740. DOI: 10.1016/j.freeradbiomed.2017.05.001.
|
| [14] |
DELBRIDGE LMD, MELLOR KM, TAYLOR DJ, et al. Myocardial stress and autophagy: Mechanisms and potential therapies[J]. Nat Rev Cardiol, 2017, 14( 7): 412- 425. DOI: 10.1038/nrcardio.2017.35.
|
| [15] |
DAI SH, CHEN T, LI X, et al. Sirt3 confers protection against neuronal ischemia by inducing autophagy: Involvement of the AMPK-mTOR pathway[J]. Free Radic Biol Med, 2017, 108: 345- 353. DOI: 10.1016/j.freeradbiomed.2017.04.005.
|
| [16] |
PU T, LIAO XH, SUN H, et al. Augmenter of liver regeneration regulates autophagy in renal ischemia-reperfusion injury via the AMPK/mTOR pathway[J]. Apoptosis, 2017, 22( 7): 955- 969. DOI: 10.1007/s10495-017-1370-6.
|
| [17] |
MOHAMED DZ, EL-SISI AEE, SOKAR SS, et al. Targeting autophagy to modulate hepatic ischemia/reperfusion injury: A comparative study between octreotide and melatonin as autophagy modulators through AMPK/PI3K/AKT/mTOR/ULK1 and Keap1/Nrf2 signaling pathways in rats[J]. Eur J Pharmacol, 2021, 897: 173920. DOI: 10.1016/j.ejphar.2021.173920.
|
| [18] |
LIGGETT JR, KANG JM, RANJIT S, et al. Oral N-acetylcysteine decreases IFN-γ production and ameliorates ischemia-reperfusion injury in steatotic livers[J]. Front Immunol, 2022, 13: 898799. DOI: 10.3389/fimmu.2022.898799.
|
| [19] |
OLTHOF PB, van GOLEN RF, MEIJER B, et al. Warm ischemia time-dependent variation in liver damage, inflammation, and function in hepatic ischemia/reperfusion injury[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863( 2): 375- 385. DOI: 10.1016/j.bbadis.2016.10.022.
|
| [20] |
CARDINAL J, PAN PH, TSUNG A. Protective role of cisplatin in ischemic liver injury through induction of autophagy[J]. Autophagy, 2009, 5( 8): 1211- 1212. DOI: 10.4161/auto.5.8.9972.
|
| [21] |
RAUTOU PE, MANSOURI A, LEBREC D, et al. Autophagy in liver diseases[J]. J Hepatol, 2010, 53( 6): 1123- 1134. DOI: 10.1016/j.jhep.2010.07.006.
|
| [22] |
RICKENBACHER A, JANG JH, LIMANI P, et al. Fasting protects liver from ischemic injury through Sirt1-mediated downregulation of circulating HMGB1 in mice[J]. J Hepatol, 2014, 61( 2): 301- 308. DOI: 10.1016/j.jhep.2014.04.010.
|
| [23] |
WANG DW, MA Y, LI ZT, et al. The role of AKT1 and autophagy in the protective effect of hydrogen sulphide against hepatic ischemia/reperfusion injury in mice[J]. Autophagy, 2012, 8( 6): 954- 962. DOI: 10.4161/auto.19927.
|
| [24] |
HU J, ZHU XH, ZHANG XJ, et al. Targeting TRAF3 signaling protects against hepatic ischemia/reperfusions injury[J]. J Hepatol, 2016, 64( 1): 146- 159. DOI: 10.1016/j.jhep.2015.08.021.
|
| [25] |
SCHOENE RB. Illnesses at high altitude[J]. Chest, 2008, 134( 2): 402- 416. DOI: 10.1378/chest.07-0561.
|
| [26] |
IRARRÁZAVAL S, ALLARD C, CAMPODÓNICO J, et al. Oxidative stress in acute hypobaric hypoxia[J]. High Alt Med Biol, 2017, 18( 2): 128- 134. DOI: 10.1089/ham.2016.0119.
|
| [27] |
YUHAI GU, ZHEN Z. Significance of the changes occurring in the levels of interleukins, SOD and MDA in rat pulmonary tissue following exposure to different altitudes and exposure times[J]. Exp Ther Med, 2015, 10( 3): 915- 920. DOI: 10.3892/etm.2015.2604.
|
| [28] |
HU YJ, SUN Q, LI ZP, et al. High basal level of autophagy in high-altitude residents attenuates myocardial ischemia-reperfusion injury[J]. J Thorac Cardiovasc Surg, 2014, 148( 4): 1674- 1680. DOI: 10.1016/j.jtcvs.2014.03.038.
|
| [29] |
KANG JW, CHO HI, LEE SM. Melatonin inhibits mTOR-dependent autophagy during liver ischemia/reperfusion[J]. Cell Physiol Biochem, 2014, 33( 1): 23- 36. DOI: 10.1159/000356647.
|
| [30] |
CZAJA MJ. Functions of autophagy in hepatic and pancreatic physiology and disease[J]. Gastroenterology, 2011, 140( 7): 1895- 1908. DOI: 10.1053/j.gastro.2011.04.038.
|
| [31] |
XIN DQ, CHU XL, BAI XM, et al. L-Cysteine suppresses hypoxia-ischemia injury in neonatal mice by reducing glial activation, promoting autophagic flux and mediating synaptic modification via H2S formation[J]. Brain Behav Immun, 2018, 73: 222- 234. DOI: 10.1016/j.bbi.2018.05.007.
|
| [32] |
SONG DD, ZHANG TT, CHEN JL, et al. Sphingosine kinase 2 activates autophagy and protects neurons against ischemic injury through interaction with Bcl-2 via its putative BH3 domain[J]. Cell Death Dis, 2017, 8( 7): e2912. DOI: 10.1038/cddis.2017.289.
|
| [33] |
XIE Y, JIANG DF, XIAO J, et al. Ischemic preconditioning attenuates ischemia/reperfusion-induced kidney injury by activating autophagy via the SGK1 signaling pathway[J]. Cell Death Dis, 2018, 9( 3): 338. DOI: 10.1038/s41419-018-0358-7.
|
| [34] |
ZHENG Z, ZHANG L, QU Y, et al. Mesenchymal stem cells protect against hypoxia-ischemia brain damage by enhancing autophagy through brain derived neurotrophic factor/mammalin target of rapamycin signaling pathway[J]. Stem Cells, 2018, 36( 7): 1109- 1121. DOI: 10.1002/stem.2808.
|
| [35] |
HU YY, ZHANG X, LUO Y, et al. Advances in the protective mechanism and clinical implications of autophagy in liver failure[J]. J Clin Hepatol, 2023, 39( 10): 2485- 2490. DOI: 10.3969/j.issn.1001-5256.2023.10.030.
胡洋洋, 张兴, 罗越, 等. 自噬对肝衰竭的保护作用机制与临床价值[J]. 临床肝胆病杂志, 2023, 39( 10): 2485- 2490. DOI: 10.3969/j.issn.1001-5256.2023.10.030.
|
| [36] |
PAN M, SHI XY. Role of mitophagy in the development and progression of liver-related diseases[J]. J Clin Hepatol, 2024, 40( 2): 413- 418. DOI: 10.12449/JCH240232.
潘萌, 史晓燕. 线粒体自噬在肝脏相关疾病发生发展中的作用[J]. 临床肝胆病杂志, 2024, 40( 2): 413- 418. DOI: 10.12449/JCH240232.
|
| [37] |
PEI CX, SHEN ZR, WU YC, et al. Eleutheroside B pretreatment attenuates hypobaric hypoxia-induced high-altitude pulmonary edema by regulating autophagic flux via the AMPK/mTOR pathway[J]. Phytother Res, 2024, 38( 12): 5657- 5671. DOI: 10.1002/ptr.8333.
|
| [38] |
STEINBERG GR, HARDIE DG. New insights into activation and function of the AMPK[J]. Nat Rev Mol Cell Biol, 2023, 24: 255- 272. DOI: 10.1038/s41580-022-00547-x.
|
| [39] |
GUO F, WEN WL, MI ZP, et al. NRSN2 promotes the malignant behavior of HPV-transfected laryngeal carcinoma cells through AMPK/ULK1 pathway mediated autophagy activation[J]. Cancer Biol Ther, 2024, 25( 1): 2334463. DOI: 10.1080/15384047.2024.2334463.
|