中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Effect of long non-coding RNAs on glycolytic pathway in primary liver cancer and related mechanisms

DOI: 10.3969/j.issn.1001-5256.2019.06.043
Research funding:

 

  • Received Date: 2018-11-26
  • Published Date: 2019-06-20
  • Primary liver cancer is a common malignant tumor with complex pathogeneses and has the features of insidious onset, high degree of malignancy, and poor prognosis. The change in glycolytic pathway is one of the most important differences between tumor cells and normal cells, and tumor cells prefer to generate energy from glycolysis. Aerobic glycolysis is often associated with the progression and poor prognosis of primary liver cancer. Long non-coding RNAs (lncRNAs) can influence the glycolysis pathway in many tumors by regulating glucose uptake and the expression and activation of glycolytic enzymes and thus play an important role in the development and progression of primary liver cancer, which suggests that lncRNAs can be used as a therapeutic target for liver cancer. This article summarizes the influence of lncRNAs on primary liver cancer and glucose metabolism and related mechanisms, so as to find potential and effective targeted therapies for primary liver cancer.

     

  • [1]BRAY F, FERLAY J, SOERJOMATARAM I, et al.Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CACancer J Clin, 2018, 68 (6) :394-424.
    [2]WONG CM, TSANG FH, NG IO.Non-coding RNAs in hepatocellular carcinoma:Molecular functions and pathological implications[J].Nat Rev Gastroenterol Hepatol, 2018, 15 (3) :137-151.
    [3]DHANASEKARAN R, LIMAYE A, CABRERA R.Hepatocellular carcinoma:Current trends in worldwide epidemiology, risk factors, diagnosis, and therapeutics[J].Hepat Med, 2012, 4:19-37.
    [4]WARBURG O.The chemical constitution of respiration ferment[J].Science, 1928, 68 (1767) :437-443.
    [5]LUNT S, VANDER HEIDEN M.Aerobic glycolysis:Meeting the metabolic requirements of cell proliferation[J].Annu Rev Cell Dev Biol, 2011, 27:441-464.
    [6]LU J, TAN M, CAI Q.The Warburg effect in tumor progression:Mitochondrial oxidative metabolism as an anti-metastasis mechanism[J].Cancer Lett, 2015, 356 (2 Pt A) :156-164.
    [7]FAN C, TANG Y, WANG J, et al.Role of long non-coding RNAs in glucose metabolism in cancer[J].Mol Cancer, 2017, 16 (1) :130.
    [8]GANAPATHY-KANNIAPPAN S, GESCHWIND JF.Tumor glycolysis as a target for cancer therapy:Progress and prospects[J].Molecular cancer, 2013, 12:152.
    [9]LI M, JIN R, WANG W, et al.STAT3 regulates glycolysis via targeting hexokinase 2 in hepatocellular carcinoma cells[J].Oncotarget, 2017, 8 (15) :24777-24784.
    [10]DEWAAL D, NOGUEIRA V, TERRY AR, et al.Hexokinase-2depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin[J].Nat Commun, 2018, 9 (1) :446.
    [11]CHESNEY J, CLARK J, KLARER A, et al.Fructose-2, 6-bisphosphate synthesis by 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 4 (PFKFB4) is required for the glycolytic response to hypoxia and tumor growth[J].Oncotarget, 2014, 5 (16) :6670-6686.
    [12]SHI L, PAN H, LIU Z, et al.Roles of PFKFB3 in cancer[J].Signal Transduct Target Ther, 2017, 2:17044.
    [13]SHI W, ZHU X, WANG C, et al.PFKFB3 blockade inhibits hepatocellular carcinoma growth by impairing DNA repair through AKT[J].Cel Death Dis, 2018, 9 (4) :428.
    [14]SHU Y, LU Y, PANG X, et al.Phosphorylation of PPARgamma at Ser84 promotes glycolysis and cell proliferation in hepatocellular carcinoma by targeting PFKFB4[J].Oncotarget, 2016, 7 (47) :76984-76994.
    [15]DAYTON T, JACKS T, van der HEIDEN M.PKM2, cancer metabolism, and the road ahead[J].EMBO Rep, 2016, 17 (12) :1721-1730.
    [16]LUO W, SEMENZA G.Emerging roles of PKM2 in cell metabolism and cancer progression[J].Trends Endocrinol Metab, 2012, 23 (11) :560-566.
    [17]WONG C, AU S, TSE A, et al.Switching of pyruvate kinase isoform L to M2 promotes metabolic reprogramming in hepatocarcinogenesis[J].PLo S One, 2014, 9 (12) :e115036.
    [18]PENG Z, LIU C, WU M.New insights into long noncoding RNAs and their roles in glioma[J].Mol Cancer, 2018, 17 (1) :61.
    [19]SUN M, KRAUS W.From discovery to function:The expanding roles of long noncoding RNAs in physiology and disease[J].Endocr Rev, 2015, 36 (1) :25-64.
    [20]WANG K, CHANG H.Molecular mechanisms of long noncoding RNAs[J].Mol Cell, 2011, 43 (6) :904-914.
    [21]WANG TH, YU CC, LIN YS, et al.Long noncoding RNA CPS1-IT1 suppresses the metastasis of hepatocellular carcinoma by regulating HIF-1αactivity and inhibiting epithelial-mesenchymal transition[J].Oncotarget, 2016, 7 (28) :43588-43603.
    [22]HU JL, AN YL.The relationship between long non-coding RNA and hepatocellular carcinoma[J].Ogran Transplantation, 2017, 8 (3) :242-245. (in Chinese) 胡建兰, 安玉玲.长链非编码RNA与肝癌[J].器官移植, 2017, 8 (3) :242-245.
    [23]LIN Y, WU M, HUANG Y, et al.Taurine up-regulated gene 1functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma[J].Hepatology, 2018, 67 (1) :188-203.
    [24]LI Y, GUO D, ZHAO Y, et al.Long non-coding RNA SNHG5promotes human hepatocellular carcinoma progression by regulating miR-26a-5p/GSK3βsignal pathway[J].Cell Death Dis, 2018, 9 (9) :888.
    [25]HUANG Y, XIANG B, LIU Y, et al.LncRNA CDKN2B-AS1promotes tumor growth and metastasis of human hepatocellular carcinoma by targeting let-7c-5p/NAP1L1 axis[J].Cancer Lett, 2018, 437:56-66.
    [26]WANG Y, SUN L, WANG L, et al.Long non-coding RNADSCR8 acts as a molecular sponge for miR-485-5p to activate Wnt/β-catenin signal pathway in hepatocellular carcinoma[J].Cell Death Dis, 2018, 9 (9) :851.
    [27]WANG H, KE J, GUO Q, et al.Long non-coding RNA CRNDEpromotes the proliferation, migration and invasion of hepatocellular carcinoma cells through miR-217/MAPK1 axis[J].J Cel Mol Med, 2018, 22 (12) :5862-5876.
    [28]SUN Q, HU B, FU P, et al.Long non-coding RNA00607 as a tumor suppressor by modulating NF-κB p65/p53 signaling axis in hepatocellular carcinoma[J].Carcinogenesis, 2018, 39 (12) :1438-1446.
    [29]ZHANG D, ZOU X, CAO C, et al.Identification and functional characterization of long non-coding RNA as a tumor suppressor for hepatocellular carcinoma[J].Theranostics, 2018, 8 (14) :3751-3765.
    [30]TAKAHASHI K, YAN I, HAGA H, et al.Modulation of hypoxia-signaling pathways by extracellular linc-RoR[J].J Cell Sci, 2014, 127 (Pt 7) :1585-1594.
    [31]YANG F, ZHANG H, MEI Y, et al.Reciprocal regulation of HIF-1αand lincRNA-p21 modulates the Warburg effect[J].Mol Cell, 2014, 53 (1) :88-100.
    [32]XIANG S, GU H, JIN L, et al.LncRNA IDH1-AS1 links the functions of c-Myc and HIF1αvia IDH1 to regulate the Warburg effect[J].Proc Natl Acad Sci USA, 2018, 115 (7) :e1465-e1474.
    [33]ZHENG X, HAN H, LIU GP, et al.LncRNA wires up Hippo and Hedgehog signaling to reprogramme glucose metabolism[J].EMBO J, 2017, 36 (22) :3325-3335.
    [34]LI S, LI J, DAI W, et al.Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death[J].Br JCancer, 2017, 117 (10) :1518-1528.
    [35]LI S, DAI W, MO W, et al.By inhibiting PFKFB3, aspirin overcomes sorafenib resistance in hepatocellular carcinoma[J].Int J Cancer, 2017, 141 (12) :2571-2584.
  • Cited by

    Periodical cited type(11)

    1. 邵范雷,陈秋平,毕倩,杜冰曌,刘卫红,邵明义. 鳖甲煎丸调控lncRNA SNHG5/miRNA-26a-5p/GSK-3β信号轴干预原发性肝癌的作用机制. 中国实验方剂学杂志. 2024(04): 107-113 .
    2. 谢瑛莹,李东东,张晓青,马纯政,胡亦杨,赵宁宁,张娟. 基于Warburg效应探讨非编码RNA在妇科肿瘤发生发展中的机制研究进展. 现代肿瘤医学. 2024(15): 2882-2891 .
    3. 谢瑛莹,张晓青,马纯政,李东东,胡亦杨,赵宁宁,张娟. 非编码RNA调控细胞焦亡在肺癌中的研究进展. 现代肿瘤医学. 2024(18): 3581-3588 .
    4. 刘晨霞,常凯,那琬琳,王艳艳,牟东,李华,江忠勇,刘媛,熊杰. miR-152-3p靶蛋白差异表达及调控机制在肝癌复发中的作用. 临床肝胆病杂志. 2021(02): 364-369 . 本站查看
    5. 孙永康,颜学波,朱泽民,申鼎成,谢智钦,赵志坚,唐才喜. 长链非编码RNA MALAT1在肝细胞癌发生发展中的作用. 临床肝胆病杂志. 2021(03): 704-708 . 本站查看
    6. 曹永新,陈良才,邓惠君,彭玉龙. PFK1在肝癌患者组织中的表达及与临床预后关系的研究. 中外医疗. 2021(03): 22-24 .
    7. 汪虎,张晨嵩,潘成武,李雷,李靖,马家驰. 糖酵解抑制剂通过抑制糖酵解和促进线粒体调节的途径诱导胃癌细胞凋亡. 蚌埠医学院学报. 2021(12): 1645-1648+1653 .
    8. 游焜,王大军,王亮,王建国. 敲除NOR1基因对人肝癌裸鼠移植瘤的影响及作用机制. 临床肝胆病杂志. 2020(02): 381-386 . 本站查看
    9. 李菠,吕明,周帅. 长链非编码RNA HOXA11-AS在肝癌组织中的表达及临床意义. 肿瘤防治研究. 2020(08): 607-610 .
    10. 梅洪亮,黄致远,胡逸林,江艳,陈敏,卢绮萍,刘志苏. 长链非编码RNA KCNQ1重叠转录物1在肝细胞癌迁移及增殖和侵袭中的作用与机制研究. 中华消化外科杂志. 2020(10): 1083-1090 .
    11. 代娟娟,杨丽娟,杜静,苗双,席思川,李晨,武艳. 人LncRNA MIR31HG基因稳定转染PC9细胞系的构建及其对细胞增殖和迁移的影响. 吉林大学学报(医学版). 2019(04): 801-806 .

    Other cited types(2)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1021) PDF downloads(209) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return