中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 36 Issue 9
Sep.  2020
Turn off MathJax
Article Contents

Methodology of establishing predictive models for clinical endpoints in patients with chronic hepatitis B

DOI: 10.3969/j.issn.1001-5256.2020.09.002
Research funding:

 

  • Received Date: 2020-05-05
  • Published Date: 2020-09-20
  • It is of great clinical significance to achieve accurate prediction of clinical endpoints in patients with chronic hepatitis B( CHB),identify the patients at a high risk of decompensated cirrhosis or hepatocellular carcinoma,and thus strengthen intervention to reduce the corresponding mortality rate. With reference to the published predictive models for clinical endpoints in CHB patients,this article elaborates on the thoughts and basic steps of establishing predictive models from the aspect of methodology,hoping to provide a reference for future studies on predictive models for hepatitis B.

     

  • loading
  • [1] WANG FS,FAN JG,ZHANG Z,et al. The global burden of liver disease:The major impact of China[J]. Hepatology,2014,60(6):2099-108.
    [2] LIU J,ZHANG S,WANG Q,et al. Seroepidemiology of hepatitis B virus infection in 2 million men aged 21-49 years in rural China:A population-based,cross-sectional study[J].Lancet Infect Dis,2016,16(1):80-6.
    [3] TERRAULT NA,LOK AS,MNCMAHO BJ,et al. Update on prevention,diagnosis,and treatment and of chronic hepatitis B:AASLD 2018 hepatitis B guidance[J]. Hepatology,2018,67(4):1560-1599.
    [4] World Health Organization. Guidelines for the prevention,care and treatment of persons with chronic hepatitis B infection[M]. Geneva,2015.
    [5] PAPATHEODORIDIS GV,CHAN HL,HANSEN BE,et al. Risk of hepatocellular carcinoma in chronic hepatitis B:Assessment and modification with current antiviral therapy[J]. J Hepatol,2015,62(4):956-967.
    [6] GRADY D,BERKOWITZ SA. Why is a good clinical prediction rule so hard to find?[J]. Arch Intern Med,2011,171(19):1701-1702.
    [7] TANGRI N,KENT DM. Toward a modern ear in clinical prediction:The TRIPOD statement for reporting prediction models[J]. Am J Kidney Dis,2015,65(4):530-533.
    [8] STEYERBERG EW,VERGOUWE Y. Towards better clinical prediction models:Seven steps for development and an ABCD for validation[J]. Eur Heart J,2014,35(29):1925-31.
    [9] MOONS KG,ALTMAN DG,REITSMA JB,et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis(TRIPOD):Explanation and elaboration[J]. Ann Intern Med,2015,162(1):W1-W73.
    [10] YUEN MF,TANAKA Y,FONG DY,et al. Independent risk factors and predictive score for the development of hepatocellular carcinoma in chronic hepatitis B[J]. J Hepatol,2009,50(1):80-88.
    [11] YANG HI,SHERMAN M,SU J,et al. Nomograms for risk of hepatocellular carcinoma in patients with chronic hepatitis B virus infection[J]. J Clin Oncol,2010,28(14):2437-2444.
    [12] WONY VW,CHAN SL,MO F,et al. Clinical scoring system to predict hepatocellular carcinoma in chronic hepatitis B carriers[J]. J Clin Oncol,2010,28(10):1660-1665.
    [13] YANG HI,YUEN MF,CHAN HL,et al. Risk estimation for hepatocellular carcinoma in chronic hepatitis B(REACH-B):Development and validation of a predictive score[J]. Lancet Oncol,2011,12(6):568-574.
    [14] WONY GL,CHAN HL,WONG CK,et al. Liver stiffnessbased optimization of hepatocellular carcinoma risk score in patients with chronic hepatitis B[J]. J Hepatol,2014,60(2):339-345.
    [15] LEE HW,YOO EJ,KIM BK,et al. Prediction of development of liver-related events by transient elastography in hepatitis B patients with complete virological response on antiviral therapy[J]. Am J Gastroenterol,2014,109(8):1241-1249.
    [16] PAPATHEODORIDIS GV,DALEKOS G,SYPSA V,et al. PAGEB:A risk score for hepatocellular carcinoma in Caucasians with chronic hepatitis B under a 5-year entecavir or tenofovir therapy[J]. J Hepatol,2016,64(4):800-806.
    [17] POH Z,SHEN L,YANG HI,et al. Real-world risk score for hepatocellular carcinoma(RWS-HCC):A clinically practical risk predictor for HCC in chronic hepatitis B[J]. Gut,2016,65(5):887-888.
    [18] KIM JH,KIM YD,LEE M,et al. Modified PAGE-B score predicts the risk of hepatocellular carcinoma in Asians with chronic hepatitis B on antiviral therapy[J]. J Hepatol,2018,69(5):1066-1073.
    [19] HSU YC,YIP TC,HO HJ,et al. Development of a scoring system to predict hepatocellular carcinoma in Asians on antivirals for chronic hepatitis B[J]. J Hepatol,2018,69(2):278-285.
    [20] YU JH,SUH YJ,JIN YJ,et al. Prediction model for hepatocellular carcinoma risk in treatment-naive chronic hepatitis B patients receiving entecavir/tenofovir[J]. Eur J Gastroenterol Hepatol,2019,31(7):865-872.
    [21] YANG HI,YEH ML,WONG GL,et al. Real-world effectiveness from the Asia Pacific Rim liver consortium for HBV risk score for the prediction of hepatocellular carcinoma in chronic hepatitis B patients treated with oral antiviral therapy[J]. J Infect Dis,2020,221(3):389-399.
    [22] WU S,KONG Y,PIAO H,et al. On-treatment changes of liver stiffness at week 26 could predict 2-year clinical outcomes in HBV-related compensated cirrhosis[J]. Liver Int,2018,38(6):1045-1054.
    [23] KONG YY,SUN YM,ZHOU JL,et al. Early steep decline of liver stiffness predicts histological reversal of fibrosis in chronic hepatitis B patients treated with entecavir[J]. J Viral Hepat,2019,26:576-585.
    [24] ALBA AC,AGORITSAS T,WALSH M,et al. Discrimination and calibration of clinical prediction models:Users’Guides to the medical literature[J]. JAMA,2017,318(14):1377-1384.
    [25] KAPPEN TH,van KLEI WA,van WOLFSWINKEL,et al. Evaluating the impact of predicton models:Lessons learned,challenges,and recommendations[J]. Diagn Progn Res,2018,2:11.
    [26] COLLINS GS,REITSMA JB,ALTMAN DG,et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis(TRIPOD):The TRIPOD statement[J]. BMJ,2015,350:g7594.
    [27] SUN YM,ZHOU JL,WANG L,et al. New classification of liver biopsy assessment for fibrosis in chronic hepatitis B patients before and after treatment[J]. Hepatology,2017,65(5):1438-1450.
    [28] D’AMICO G,ABRALDES JG,REBORA P,et al. Ordinal outcomes are superior to binary outcomes for designing and evaluating clinical trials in compensated cirrhosis[J]. Hepatology,2019.[Online ahead of print]
    [29] WOLFF RF,MOONS KGM,RILEY RD,et al. PROBAST:A tool to assess the risk of bias and applicability of prediction model studies[J]. Ann Intern Med,2019,170:51-58.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1262) PDF downloads(197) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return