[1] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492
|
[2] |
HUANG R, NI JJ, GAO Y. Relationship between intestinal flora-lipopolysaccharide- Toll-like receptor axis and hepatocellular carcinoma[J]. J Clin Hepatol, 2018, 34(6): 1325-1328. (in Chinese) DOI: 10.3969/j.issn.1001-5256.2018.06.041
黄蓉, 倪加加, 高毅. 肠道菌群-脂多糖-Toll样受体4轴与肝细胞癌的关系[J]. 临床肝胆病杂志, 2018, 34(6): 1325-1328. DOI: 10.3969/j.issn.1001-5256.2018.06.041
|
[3] |
PANARO MA, CORRADO A, BENAMEUR T, et al. The emerging role of curcumin in the modulation of TLR-4 signaling pathway: Focus on neuroprotective and anti-rheumatic properties[J]. Int J Mol Sci, 2020, 21(7): 2299. DOI: 10.3390/ijms21072299
|
[4] |
AWASTHI S. Toll-like receptor-4 modulation for cancer immunotherapy[J]. Front Immunol, 2014, 5: 328. http://www.ncbi.nlm.nih.gov/pubmed/25120541
|
[5] |
LU YC, YEH WC, OHASHI PS. LPS/TLR4 signal transduction pathway[J]. Cytokine, 2008, 42(2): 145-151. DOI: 10.1016/j.cyto.2008.01.006
|
[6] |
OCHI A, NGUYEN AH, BEDROSIAN AS, et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells[J]. J Exp Med, 2012, 209(9): 1671-1687. DOI: 10.1084/jem.20111706
|
[7] |
MAI CW, KANG YB, PICHIKA MR. Should a Toll-like receptor 4 (TLR-4) agonist or antagonist be designed to treat cancer? TLR-4: Its expression and effects in the ten most common cancers[J]. Onco Targets Ther, 2013, 6: 1573-1587. http://www.ncbi.nlm.nih.gov/pubmed/24235843
|
[8] |
MAN XH, SUN YL, GONG YF, et al. Expression of toll-like receptor 4 in pancreatic cancer and its relationship with tumor angiogenesis[J]. Chin J Pancreatol, 2012, 12(3): 167-169. (in Chinese) DOI: 10.3760/cma.j.issn.1674-1935.2012.03.008
满晓华, 孙运良, 龚燕芳, 等. Toll样受体4在胰腺癌组织中的表达及其与肿瘤血管生成的关系[J]. 中华胰腺病杂志, 2012, 12(3): 167-169. DOI: 10.3760/cma.j.issn.1674-1935.2012.03.008
|
[9] |
ZHANG JJ, WU HS, WANG L, et al. Expression and significance of TLR4 and HIF-1alpha in pancreatic ductal adenocarcinoma[J]. World J Gastroenterol, 2010, 16(23): 2881-2888. DOI: 10.3748/wjg.v16.i23.2881
|
[10] |
FAN P, ZHANG JJ, WANG B, et al. Hypoxia-inducible factor-1 up-regulates the expression of Toll-like receptor 4 in pancreatic cancer cells under hypoxic conditions[J]. Pancreatology, 2012, 12(2): 170-178. DOI: 10.1016/j.pan.2012.02.015
|
[11] |
ABREU MT, PEEK RM Jr. Gastrointestinal malignancy and the microbiome[J]. Gastroenterology, 2014, 146(6): 1534-1546.e3. DOI: 10.1053/j.gastro.2014.01.001
|
[12] |
PUSHALKAR S, HUNDEYIN M, DALEY D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression[J]. Cancer Discov, 2018, 8(4): 403-416. DOI: 10.1158/2159-8290.CD-17-1134
|
[13] |
MA X, WANG H, ZHANG P, et al. Association between small intestinal bacterial overgrowth and toll-like receptor 4 in patients with pancreatic carcinoma and cholangiocarcinoma[J]. Turk J Gastroenterol, 2019, 30(2): 177-183. DOI: 10.5152/tjg.2018.17512
|
[14] |
BLOOMSTON M, ZERVOS EE, ROSEMURGY AS 2nd. Matrix metalloproteinases and their role in pancreatic cancer: A review of preclinical studies and clinical trials[J]. Ann Surg Oncol, 2002, 9(7): 668-674. DOI: 10.1007/BF02574483
|
[15] |
DEL POZO JL. Primers on molecular pathways: Lipopolysaccharide signaling-potential role in pancreatitis and pancreatic cancer[J]. Pancreatology, 2010, 10(2-3): 114-118. DOI: 10.1159/000299987
|
[16] |
IKEBE M, KITAURA Y, NAKAMURA M, et al. Lipopolysaccharide (LPS) increases the invasive ability of pancreatic cancer cells through the TLR4/MyD88 signaling pathway[J]. J Surg Oncol, 2009, 100(8): 725-731. DOI: 10.1002/jso.21392
|
[17] |
WU Y, LU J, ANTONY S, et al. Activation of TLR4 is required for the synergistic induction of dual oxidase 2 and dual oxidase A2 by IFN-γ and lipopolysaccharide in human pancreatic cancer cell lines[J]. J Immunol, 2013, 190(4): 1859-1872. DOI: 10.4049/jimmunol.1201725
|
[18] |
XIE C, LIU D, CHEN Q, et al. Soluble B7-H3 promotes the invasion and metastasis of pancreatic carcinoma cells through the TLR4/NF-κB pathway[J]. Sci Rep, 2016, 6: 27528. DOI: 10.1038/srep27528
|
[19] |
ZHAO J, MENG Z, XIE C, et al. B7-H3 is regulated by BRD4 and promotes TLR4 expression in pancreatic ductal adenocarcinoma[J]. Int J Biochem Cell Biol, 2019, 108: 84-91. DOI: 10.1016/j.biocel.2019.01.011
|
[20] |
RUPAIMOOLE R, SLACK FJ. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017, 16(3): 203-222. DOI: 10.1038/nrd.2016.246
|
[21] |
ZHOU M, CHEN J, ZHOU L, et al. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203[J]. Cell Immunol, 2014, 292(1-2): 65-69. DOI: 10.1016/j.cellimm.2014.09.004
|
[22] |
LIU J, XU D, WANG Q, et al. LPS induced miR-181a promotes pancreatic cancer cell migration via targeting PTEN and MAP2K4[J]. Dig Dis Sci, 2014, 59(7): 1452-1460. DOI: 10.1007/s10620-014-3049-y
|
[23] |
BINKER-COSEN MJ, RICHARDS D, OLIVER B, et al. Palmitic acid increases invasiveness of pancreatic cancer cells AsPC-1 through TLR4/ROS/NF-κB/MMP-9 signaling pathway[J]. Biochem Biophys Res Commun, 2017, 484(1): 152-158. DOI: 10.1016/j.bbrc.2017.01.051
|
[24] |
LIU CY, XU JY, SHI XY, et al. M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway[J]. Lab Invest, 2013, 93(7): 844-854. DOI: 10.1038/labinvest.2013.69
|
[25] |
WANG C, NING K, HU HH, et al. Research progress in tumor microenvironment of pancreatic cancer[J]. Chin J Dig Surg, 2020, 19(1): 109-112. (in Chinese) DOI: 10.3760/cma.j.issn.1673-9752.2020.01.018
王超, 宁克, 胡欢欢, 等. 胰腺癌肿瘤微环境的研究进展[J]. 中华消化外科杂志, 2020, 19(1): 109-112. DOI: 10.3760/cma.j.issn.1673-9752.2020.01.018
|
[26] |
DAS S, SHAPIRO B, VUCIC EA, et al. Tumor cell-derived IL1β promotes desmoplasia and immune suppression in pancreatic cancer[J]. Cancer Res, 2020, 80(5): 1088-1101. DOI: 10.1158/0008-5472.CAN-19-2080
|
[27] |
CHEN Q, WANG J, ZHANG Q, et al. Tumour cell-derived debris and IgG synergistically promote metastasis of pancreatic cancer by inducing inflammation via tumour-associated macrophages[J]. Br J Cancer, 2019, 121(9): 786-795. DOI: 10.1038/s41416-019-0595-2
|
[28] |
GRIMMIG T, MOENCH R, KRECKEL J, et al. Toll like receptor 2, 4, and 9 signaling promotes autoregulative tumor cell growth and VEGF/PDGF expression in human pancreatic cancer[J]. Int J Mol Sci, 2016, 17(12): 2060. DOI: 10.3390/ijms17122060
|
[29] |
SUN Y, WU C, MA J, et al. Toll-like receptor 4 promotes angiogenesis in pancreatic cancer via PI3K/AKT signaling[J]. Exp Cell Res, 2016, 347(2): 274-282. DOI: 10.1016/j.yexcr.2016.07.009
|
[30] |
SUN YL, MA JX, MAN XH, et al. The role of p38 MAPK signaling pathway in the promotion of pancreatic cancer angiogenesis by TLR4[J]. Chongqing Med, 2017, 46(2): 161-164. (in Chinese) DOI: 10.3969/j.issn.1671-8348.2017.02.005
孙运良, 马建霞, 满晓华, 等. p38 MAPK信号通路在TLR4促进胰腺癌血管生成中的作用[J]. 重庆医学, 2017, 46(2): 161-164. DOI: 10.3969/j.issn.1671-8348.2017.02.005
|
[31] |
ZHANG M, YAN L, WANG GJ, et al. Resistin effects on pancreatic cancer progression and chemoresistance are mediated through its receptors CAP1 and TLR4[J]. J Cell Physiol, 2019, 234(6): 9457-9466. DOI: 10.1002/jcp.27631
|
[32] |
CHEN X, CHENG F, LIU Y, et al. Toll-like receptor 2 and Toll-like receptor 4 exhibit distinct regulation of cancer cell stemness mediated by cell death-induced high-mobility group box 1[J]. EBioMedicine, 2019, 40: 135-150. DOI: 10.1016/j.ebiom.2018.12.016
|
[33] |
SHETAB BOUSHEHRI MA, LAMPRECHT A. TLR4-based immunotherapeutics in cancer: A review of the achievements and shortcomings[J]. Mol Pharm, 2018, 15(11): 4777-4800. DOI: 10.1021/acs.molpharmaceut.8b00691
|
[34] |
SHI XY, ZHAO J. Research progress of Gemcitabine in combined therapy of pancreatic cancer[J]. China Med Herald, 2020, 17(21): 50-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202021015.htm
石雪英, 赵金. 吉西他滨在胰腺癌联合治疗方案中的研究进展[J]. 中国医药导报, 2020, 17(21): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202021015.htm
|
[35] |
MA JX, SUN YL, YU Y, et al. Triptolide enhances the sensitivity of pancreatic cancer PANC-1 cells to gemcitabine by inhibiting TLR4/NF-κB signaling[J]. Am J Transl Res, 2019, 11(6): 3750-3760. http://www.ncbi.nlm.nih.gov/pubmed/31312385
|
[36] |
ZHOU L, QI L, JIANG L, et al. Antitumor activity of gemcitabine can be potentiated in pancreatic cancer through modulation of TLR4/NF-κB signaling by 6-shogaol[J]. AAPS J, 2014, 16(2): 246-257. DOI: 10.1208/s12248-013-9558-3
|
[37] |
XIE X, MA L, ZHOU Y, et al. Polysaccharide enhanced NK cell cytotoxicity against pancreatic cancer via TLR4/MAPKs/NF-κB pathway in vitro/vivo[J]. Carbohydr Polym, 2019, 225: 115223. DOI: 10.1016/j.carbpol.2019.115223
|
[38] |
ROSENDAHL AH, SUN C, WU D, et al. Polysaccharide-K (PSK) increases p21(WAF/Cip1) and promotes apoptosis in pancreatic cancer cells[J]. Pancreatology, 2012, 12(6): 467-474. DOI: 10.1016/j.pan.2012.09.004
|