[1] |
VURAL A, ATTAWAY A, WELCH N, et al. Skeletal muscle loss phenotype in cirrhosis: A nationwide analysis of hospitalized patients[J]. Clin Nutr, 2020, 39(12): 3711-3720. DOI: 10.1016/j.clnu.2020.03.032.
|
[2] |
HAMAGUCHI Y, KAIDO T, OKUMURA S, et al. Proposal for new selection criteria considering pre-transplant muscularity and visceral adiposity in living donor liver transplantation[J]. J Cachexia Sarcopenia Muscle, 2018, 9(2): 246-254. DOI: 10.1002/jcsm.12276.
|
[3] |
TUTTLE C, THANG L, MAIER AB. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis[J]. Ageing Res Rev, 2020, 64: 101185. DOI: 10.1016/j.arr.2020.101185.
|
[4] |
LIU X, HOU L, XIA X, et al. Prevalence of sarcopenia in multi ethnics adults and the association with cognitive impairment: Findings from West-China health and aging trend study[J]. BMC Geriatr, 2020, 20(1): 63. DOI: 10.1186/s12877-020-1468-5.
|
[5] |
BEYER I, METS T, BAUTMANS I. Chronic low-grade inflammation and age-related sarcopenia[J]. Curr Opin Clin Nutr Metab Care, 2012, 15(1): 12-22. DOI: 10.1097/MCO.0b013e32834dd297.
|
[6] |
DALLE S, ROSSMEISLOVA L, KOPPO K. The role of inflammation in age-related sarcopenia[J]. Front Physiol, 2017, 8: 1045. DOI: 10.3389/fphys.2017.01045.
|
[7] |
PAPADOPOULOU SK. Sarcopenia: A contemporary health problem among older adult populations[J]. Nutrients, 2020, 12(5): 1293. DOI: 10.3390/nu12051293.
|
[8] |
DUARTE-ROJO A, RUIZ-MARGÁIN A, MONTAÑO-LOZA AJ, et al. Exercise and physical activity for patients with end-stage liver disease: Improving functional status and sarcopenia while on the transplant waiting list[J]. Liver Transpl, 2018, 24(1): 122-139. DOI: 10.1002/lt.24958.
|
[9] |
HAN F. Study on the correlation between muscle loss and nutritional risk in patients with liver cirrhosis or hepatocellular carcinoma[D]. Tianjin: Tianjin Medical University, 2019.
韩芳. 肝硬化及肝癌肌肉减少与营养风险相关性研究[D]. 天津: 天津医科大学, 2019.
|
[10] |
KAPPUS MR, WEGERMANN K, BOZDOGAN E, et al. Use of skeletal muscle index as a predictor of wait-list mortality in patients with end-stage liver disease[J]. Liver Transpl, 2020, 26(9): 1090-1099. DOI: 10.1002/lt.25802.
|
[11] |
PATERNOSTRO R, LAMPICHLER K, BARDACH C, et al. The value of different CT-based methods for diagnosing low muscle mass and predicting mortality in patients with cirrhosis[J]. Liver Int, 2019, 39(12): 2374-2385. DOI: 10.1111/liv.14217.
|
[12] |
PONTI F, SANTORO A, MERCATELLI D, et al. Aging and imaging assessment of body composition: From fat to facts[J]. Front Endocrinol (Lausanne), 2019, 10: 861. DOI: 10.3389/fendo.2019.00861.
|
[13] |
WANG X, WANG PJ, XIONG T, et al. Application of MRI in assessing fat infiltration of thigh muscles in progressive muscular dystrophy[J]. J Prac Radiol, 2019, 35(1): 81-84, 93. DOI: 10.3969/j.issn.1002-1671.2019.01.020.
王霞, 王鹏娟, 熊婷, 等. MRI对进行性肌营养不良大腿肌肉脂肪浸润评估的应用研究[J]. 实用放射学杂志, 2019, 35(1): 81-84, 93. DOI: 10.3969/j.issn.1002-1671.2019.01.020.
|
[14] |
GRIMM A, MEYER H, NICKEL MD, et al. Repeatability of Dixon magnetic resonance imaging and magnetic resonance spectroscopy for quantitative muscle fat assessments in the thigh[J]. J Cachexia Sarcopenia Muscle, 2018, 9(6): 1093-1100. DOI: 10.1002/jcsm.12343.
|
[15] |
KHAN AI, REITER DA, SEKHAR A, et al. MRI quantitation of abdominal skeletal muscle correlates with CT-based analysis: implications for sarcopenia measurement[J]. Appl Physiol Nutr Metab, 2019, 44(8): 814-819. DOI: 10.1139/apnm-2018-0473.
|
[16] |
LEMOS T, GALLAGHER D. Current body composition measurement techniques[J]. Curr Opin Endocrinol Diabetes Obes, 2017, 24(5): 310-314. DOI: 10.1097/MED.0000000000000360.
|
[17] |
GOLSE N, BUCUR PO, CIACIO O, et al. A new definition of sarcopenia in patients with cirrhosis undergoing liver transplantation[J]. Liver Transpl, 2017, 23(2): 143-154. DOI: 10.1002/lt.24671.
|
[18] |
WILSON JP, STRAUSS BJ, FAN B, et al. Improved 4-compartment body-composition model for a clinically accessible measure of total body protein[J]. Am J Clin Nutr, 2013, 97(3): 497-504. DOI: 10.3945/ajcn.112.048074.
|
[19] |
KAIDO T, TAMAI Y, HAMAGUCHI Y, et al. Effects of pretransplant sarcopenia and sequential changes in sarcopenic parameters after living donor liver transplantation[J]. Nutrition, 2017, 33: 195-198. DOI: 10.1016/j.nut.2016.07.002.
|
[20] |
FUJIMOTO K, INAGE K, EGUCHI Y, et al. Dual-energy X-ray absorptiometry and bioelectrical impedance analysis are beneficial tools for measuring the trunk muscle mass of patients with low back pain[J]. Spine Surg Relat Res, 2019, 3(4): 335-341. DOI: 10.22603/ssrr.2018-0040.
|
[21] |
WINGO BC, BARRY VG, ELLIS AC, et al. Comparison of segmental body composition estimated by bioelectrical impedance analysis and dual-energy X-ray absorptiometry[J]. Clin Nutr ESPEN, 2018, 28: 141-147. DOI: 10.1016/j.clnesp.2018.08.013.
|
[22] |
AKIN S, MUCUK S, ÖZTVRK A, et al. Muscle function-dependent sarcopenia and cut-off values of possible predictors in community-dwelling Turkish elderly: Calf circumference, midarm muscle circumference and walking speed[J]. Eur J Clin Nutr, 2015, 69(10): 1087-1090. DOI: 10.1038/ejcn.2015.42.
|
[23] |
BOHANNON RW. Grip strength: An indispensable biomarker for older adults[J]. Clin Interv Aging, 2019, 14: 1681-1691. DOI: 10.2147/CIA.S194543.
|
[24] |
ITOH S, YOSHIZUMI T, SAKATA K, et al. Slow gait speed is a risk factor for complications after hepatic resection[J]. J Gastrointest Surg, 2019, 23(9): 1810-1816. DOI: 10.1007/s11605-018-3993-5.
|
[25] |
GONZÁLEZ CORREA CH, MARULANDA MEJÍA F, CASTAÑO GONZÁLEZ PA, et al. Bioelectrical impedance analysis and dual X-ray absorptiometry agreement for skeletal muscle mass index evaluation in sarcopenia diagnosis[J]. Physiol Meas, 2020, 41(6): 064005. DOI: 10.1088/1361-6579/ab8e5f.
|
[26] |
ZAMBRANO DN, XIAO J, PRADO CM, et al. Patient-Generated Subjective Global Assessment and Computed Tomography in the assessment of malnutrition and sarcopenia in patients with cirrhosis: Is there any association?[J]. Clin Nutr, 2020, 39(5): 1535-1540. DOI: 10.1016/j.clnu.2019.06.018.
|
[27] |
GHARAGOZLIAN S, MALA T, BREKKE HK, et al. Nutritional status, sarcopenia, gastrointestinal symptoms and quality of life after gastrectomy for cancer-A cross-sectional pilot study[J]. Clin Nutr ESPEN, 2020, 37: 195-201. DOI: 10.1016/j.clnesp.2020.03.001.
|
[28] |
WEI CL. The role of L3 skeletal muscle mass index in gasstric cancer patients nutritional risk evaluation and prognosis evaluation[D]. Nanning: Guangxi Medical University, 2015.
韦朝联. L3骨骼肌质量指数对胃癌患者营养风险评估及预后影响的研究[D]. 南宁: 广西医科大学, 2015.
|
[29] |
SHOREIBAH MG, MAHMOUD K, ABOUELDAHAB NA, et al. Psoas muscle density in combination with model for end-stage liver disease score can improve survival predictability in transjugular intrahepatic portosystemic shunts[J]. J Vasc Interv Radiol, 2019, 30(2): 154-161. DOI: 10.1016/j.jvir.2018.10.006.
|
[30] |
ROMAGNA ES, APPEL-DA-SILVA MC, SUWA E, et al. Muscle depletion in cirrhotic patients assessed using computed tomography: A cross-sectional study[J]. Sao Paulo Med J, 2020, 138(2): 152-157. DOI: 10.1590/1516-3180.2019.0436.R1.19122019.
|
[31] |
TIAN H, ZHOU D, YE C, et al. Effect of saropenia on clinical prognosis of gastric cancer patients: A prospective cohort study[J]. Paren And Ent Nutr, 2018, 25(3): 166-170, 175. DOI: 10.16151/j.1007-810x.2018.03.010.
田浩, 周达, 叶晨, 等. 术前肌肉减少症对胃癌病人临床预后的影响: 一项前瞻性队列研究[J]. 肠外与肠内营养, 2018, 25(3): 166-170, 175. DOI: 10.16151/j.1007-810x.2018.03.010.
|
[32] |
RECIO-BOILES A, GALEAS JN, GOLDWASSER B, et al. Enhancing evaluation of sarcopenia in patients with non-small cell lung cancer (NSCLC) by assessing skeletal muscle index (SMI) at the first lumbar (L1) level on routine chest computed tomography (CT)[J]. Support Care Cancer, 2018, 26(7): 2353-2359. DOI: 10.1007/s00520-018-4051-2.
|
[33] |
DING H, SUN JT, LI JJ, et al. The value of sarcopenia in assessing the operational risk and prognosis of rectal cancer patients[J]. J Prac Radiol, 2018, 35(3): 473-476.
丁晖, 孙精涛, 李军军, 等. 肌少症在评估直肠癌患者手术风险及预后中的价值[J]. 实用放射学杂志, 2018, 35(3): 473-476.
|
[34] |
KIM G, KANG SH, KIM MY, et al. Prognostic value of sarcopenia in patients with liver cirrhosis: A systematic review and meta-analysis[J]. PLoS One, 2017, 12(10): e0186990. DOI: 10.1371/journal.pone.0186990.
|
[35] |
LIU J, HUANG H. Pathogenesis of sarcopenia in liver cirrhosis and current status of its diagnosis and treatment[J]. J Clin Hepatol, 2020, 36(4): 895-899. DOI: 10.3969/j.issn.1001-5256.2020.04.041.
刘嘉, 黄华. 肝硬化肌肉减少症的发病机制及诊治现状[J]. 临床肝胆病杂志, 2020, 36(4): 895-899. DOI: 10.3969/j.issn.1001-5256.2020.04.041.
|
[36] |
CRUZ-JENTOFT AJ, BAEYENS JP, BAUER JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on sarcopenia in older people[J]. Age Ageing, 2010, 39(4): 412-423. DOI: 10.1093/ageing/afq034.
|
[37] |
RUS GE, PORTER J, BRUNTON A, et al. Nutrition interventions implemented in hospital to lower risk of sarcopenia in older adults: A systematic review of randomised controlled trials[J]. Nutr Diet, 2020, 77(1): 90-102. DOI: 10.1111/1747-0080.12608.
|
[38] |
PRAKTIKNJO M, CLEES C, PIGLIACELLI A, et al. Sarcopenia is associated with development of acute-on-chronic liver failure in decompensated liver cirrhosis receiving transjugular intrahepatic portosystemic shunt[J]. Clin Transl Gastroenterol, 2019, 10(4): e00025. DOI: 10.14309/ctg.0000000000000025.
|