[1] |
SINGAL AG, LAMPERTICO P, NAHON P. Epidemiology and surveillance for hepatocellular carcinoma: New trends[J]. J Hepatol, 2020, 72(2): 250-261. DOI: 10.1016/j.jhep.2019.08.025.
|
[2] |
HOECHST B, ORMANDY LA, BALLMAIER M, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells[J]. Gastroenterology, 2008, 135(1): 234-243. DOI: 10.1053/j.gastro.2008.03.020.
|
[3] |
IWATA T, KONDO Y, KIMURA O, et al. PD-L1+MDSCs are increased in HCC patients and induced by soluble factor in the tumor microenvironment[J]. Sci Rep, 2016, 6: 39296. DOI: 10.1038/srep39296.
|
[4] |
ZHANG X, FU X, LI T, et al. The prognostic value of myeloid derived suppressor cell level in hepatocellular carcinoma: A systematic review and meta-analysis[J]. PLoS One, 2019, 14(12): e0225327. DOI: 10.1371/journal.pone.0225327.
|
[5] |
TALMADGE JE, GABRILOVICH DI. History of myeloid-derived suppressor cells[J]. Nat Rev Cancer, 2013, 13(10): 739-752. DOI: 10.1038/nrc3581.
|
[6] |
LU C, RONG D, ZHANG B, et al. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: Challenges and opportunities[J]. Mol Cancer, 2019, 18(1): 130. DOI: 10.1186/s12943-019-1047-6.
|
[7] |
NAN J, XING YF, HU B, et al. Endoplasmic reticulum stress induced LOX-1+ CD15+ polymorphonuclear myeloid-derived suppressor cells in hepatocellular carcinoma[J]. Immunology, 2018, 154(1): 144-155. DOI: 10.1111/imm.12876.
|
[8] |
WAN S, KUO N, KRYCZEK I, et al. Myeloid cells in hepatocellular carcinoma[J]. Hepatology, 2015, 62(4): 1304-1312. DOI: 10.1002/hep.27867.
|
[9] |
VEGLIA F, PEREGO M, GABRILOVICH D. Myeloid-derived suppressor cells coming of age[J]. Nat Immunol, 2018, 19(2): 108-119. DOI: 10.1038/s41590-017-0022-x.
|
[10] |
GIANNELLI G, RANI B, DITURI F, et al. Moving towards personalised therapy in patients with hepatocellular carcinoma: The role of the microenvironment[J]. Gut, 2014, 63(10): 1668-1676. DOI: 10.1136/gutjnl-2014-307323.
|
[11] |
EGGERT T, WOLTER K, JI J, et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression[J]. Cancer Cell, 2016, 30(4): 533-547. DOI: 10.1016/j.ccell.2016.09.003.
|
[12] |
LI YM, LIU ZY, WANG JC, et al. Receptor-interacting protein kinase 3 deficiency recruits myeloid-derived suppressor cells to hepatocellular carcinoma through the chemokine (C-X-C Motif) ligand 1-chemokine (C-X-C Motif) receptor 2 axis[J]. Hepatology, 2019, 70(5): 1564-1581. DOI: 10.1002/hep.30676.
|
[13] |
WANG D, LI X, LI J, et al. APOBEC3B interaction with PRC2 modulates microenvironment to promote HCC progression[J]. Gut, 2019, 68(10): 1846-1857. DOI: 10.1136/gutjnl-2018-317601.
|
[14] |
SUN H, YANG W, TIAN Y, et al. An inflammatory-CCRK circuitry drives mTORC1-dependent metabolic and immunosuppressive reprogramming in obesity-associated hepatocellular carcinoma[J]. Nat Commun, 2018, 9(1): 5214. DOI: 10.1038/s41467-018-07402-8.
|
[15] |
ZHOU J, LIU M, SUN H, et al. Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy[J]. Gut, 2018, 67(5): 931-944. DOI: 10.1136/gutjnl-2017-314032.
|
[16] |
ZENG X, ZHOU J, XIONG Z, et al. Cell cycle-related kinase reprograms the liver immune microenvironment to promote cancer metastasis[J]. Cell Mol Immunol, 2021, 18(4): 1005-1015. DOI: 10.1038/s41423-020-00534-2.
|
[17] |
LIU LZ, ZHANG Z, ZHENG BH, et al. CCL15 recruits suppressive monocytes to facilitate immune escape and disease progression in hepatocellular carcinoma[J]. Hepatology, 2019, 69(1): 143-159. DOI: 10.1002/hep.30134.
|
[18] |
LIN Y, YANG X, LIU W, et al. Chemerin has a protective role in hepatocellular carcinoma by inhibiting the expression of IL-6 and GM-CSF and MDSC accumulation[J]. Oncogene, 2017, 36(25): 3599-3608. DOI: 10.1038/onc.2016.516.
|
[19] |
YANG X, YE X, ZHANG L, et al. Disruption of LTBP4 induced activated TGFβ1, immunosuppression signal and promoted pulmonary metastasis in hepatocellular carcinoma[J]. Onco Targets Ther, 2020, 13: 7007-7017. DOI: 10.2147/OTT.S246766.
|
[20] |
LIU M, ZHOU J, LIU X, et al. Targeting monocyte-intrinsic enhancer reprogramming improves immunotherapy efficacy in hepatocellular carcinoma[J]. Gut, 2020, 69(2): 365-379. DOI: 10.1136/gutjnl-2018-317257.
|
[21] |
HÖCHST B, SCHILDBERG FA, SAUERBORN P, et al. Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion[J]. J Hepatol, 2013, 59(3): 528-535. DOI: 10.1016/j.jhep.2013.04.033.
|
[22] |
CHOU HS, HSIEH CC, YANG HR, et al. Hepatic stellate cells regulate immune response by way of induction of myeloid suppressor cells in mice[J]. Hepatology, 2011, 53(3): 1007-1019. DOI: 10.1002/hep.24162.
|
[23] |
HSIEH CC, HUNG CH, CHIANG M, et al. Hepatic stellate cells enhance liver cancer progression by inducing myeloid-derived suppressor cells through interleukin-6 signaling[J]. Int J Mol Sci, 2019, 20(20): 5079. DOI: 10.3390/ijms20205079.
|
[24] |
XU Y, FANG F, JIAO H, et al. Activated hepatic stellate cells regulate MDSC migration through the SDF-1/CXCR4 axis in an orthotopic mouse model of hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2019, 68(12): 1959-1969. DOI: 10.1007/s00262-019-02414-9.
|
[25] |
XU Y, ZHAO W, XU J, et al. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2[J]. Oncotarget, 2016, 7(8): 8866-8878. DOI: 10.18632/oncotarget.6839.
|
[26] |
XU Y, HUANG Y, XU W, et al. Activated hepatic stellate cells (HSCs) exert immunosuppressive effects in hepatocellular carcinoma by producing complement C3[J]. Onco Targets Ther, 2020, 13: 1497-1505. DOI: 10.2147/OTT.S234920.
|
[27] |
LI J, LI H, YU Y, et al. Mannan-binding lectin suppresses growth of hepatocellular carcinoma by regulating hepatic stellate cell activation via the ERK/COX-2/PGE2 pathway[J]. Oncoimmunology, 2019, 8(2): e1527650. DOI: 10.1080/2162402X.2018.1527650.
|
[28] |
CHENG JT, DENG YN, YI HM, et al. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation[J]. Oncogenesis, 2016, 5: e198. DOI: 10.1038/oncsis.2016.7.
|
[29] |
DENG Y, CHENG J, FU B, et al. Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells[J]. Oncogene, 2017, 36(8): 1090-1101. DOI: 10.1038/onc.2016.273.
|
[30] |
YIN Z, JIANG K, LI R, et al. Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation, progression and therapy[J]. Mol Cancer, 2018, 17(1): 178. DOI: 10.1186/s12943-018-0926-6.
|
[31] |
LACOTTE S, SLITS F, ORCI LA, et al. Impact of myeloid-derived suppressor cell on Kupffer cells from mouse livers with hepatocellular carcinoma[J]. Oncoimmunology, 2016, 5(11): e1234565. DOI: 10.1080/2162402X.2016.1234565.
|
[32] |
HOECHST B, VOIGTLAENDER T, ORMANDY L, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor[J]. Hepatology, 2009, 50(3): 799-807. DOI: 10.1002/hep.23054.
|
[33] |
HU CE, GAN J, ZHANG RD, et al. Up-regulated myeloid-derived suppressor cell contributes to hepatocellular carcinoma development by impairing dendritic cell function[J]. Scand J Gastroenterol, 2011, 46(2): 156-164. DOI: 10.3109/00365521.2010.516450.
|
[34] |
CHIU DK, TSE AP, XU IM, et al. Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma[J]. Nat Commun, 2017, 8(1): 517. DOI: 10.1038/s41467-017-00530-7.
|
[35] |
CHIU DK, XU IM, LAI RK, et al. Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26[J]. Hepatology, 2016, 64(3): 797-813. DOI: 10.1002/hep.28655.
|
[36] |
YU SJ, MA C, HEINRICH B, et al. Targeting the crosstalk between cytokine-induced killer cells and myeloid-derived suppressor cells in hepatocellular carcinoma[J]. J Hepatol, 2019, 70(3): 449-457. DOI: 10.1016/j.jhep.2018.10.040.
|
[37] |
WU H, LI SS, ZHOU M, et al. Palliative radiofrequency ablation accelerates the residual tumor progression through increasing tumor-infiltrating MDSCs and reducing T-Cell-mediated anti-tumor immune responses in animal model[J]. Front Oncol, 2020, 10: 1308. DOI: 10.3389/fonc.2020.01308.
|