[1] |
HENNES EM, ZENIYA M, CZAJA AJ, et al. Simplified criteria for the diagnosis of autoimmune hepatitis[J]. Hepatology, 2008, 48(1): 169-176. DOI: 10.1002/hep.22322.
|
[2] |
European Association for the Study of Liver. EASL Clinical Practice Guidelines: Autoimmune hepatitis[J]. J Hepatol, 2015, 63(4): 971-1004. DOI: 10.1016/j.jhep.2015.06.030.
|
[3] |
Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Gastroenterology, Chinese Medical Association; Chinese Society of Infectious Diseases, Chinese Medical Association. Consensus on the diagnosis and management of autoimmune hepatitis(2015)[J]. J Clin Hepatol, 2016, 32(1): 9-22. DOI: 10.3969/j.issn.1001-5256.2016.01.002.
中华医学会肝病学分会, 中华医学会消化病学分会, 中华医学会感染病学分会. 自身免疫性肝炎诊断和治疗共识(2015)[J]. 临床肝胆病杂志, 2016, 32(1): 9-22. DOI: 10.3969/j.issn.1001-5256.2016.01.002.
|
[4] |
CAO YN, ZHOU GQ, WANG XB, et al. Research advances in the pathogenesis of autoimmune hepatitis[J]. J Clin Hepatol, 2019, 35(10): 2335-2338. DOI: 10.3969/j.issn.1001-5256.2019.10.045.
曹亦楠, 周桂琴, 王宪波, 等. 自身免疫性肝炎发病机制的研究现状[J]. 临床肝胆病杂志, 2019, 35(10): 2335-2338. DOI: 10.3969/j.issn.1001-5256.2019.10.045.
|
[5] |
FLOREANI A, RESTREPO-JIMÉNEZ P, SECCHI MF, et al. Etiopathogenesis of autoimmune hepatitis[J]. J Autoimmun, 2018, 95: 133-143. DOI: 10.1016/j.jaut.2018.10.020.
|
[6] |
CZAJA AJ. Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions[J]. World J Gastroenterol, 2019, 25(45): 6579-6606. DOI: 10.3748/wjg.v25.i45.6579.
|
[7] |
MEHRFELD C, ZENNER S, KORNEK M, et al. The contribution of non-professional antigen-presenting cells to immunity and tolerance in the liver[J]. Front Immunol, 2018, 9: 635. DOI: 10.3389/fimmu.2018.00635.
|
[8] |
SUCHER E, SUCHER R, GRADISTANAC T, et al. Autoimmune hepatitis-immunologically triggered liver pathogenesis-diagnostic and therapeutic strategies[J]. J Immunol Res, 2019, 2019: 9437043. DOI: 10.1155/2019/9437043.
|
[9] |
ARNDTZ K, HIRSCHFIELD GM. The pathogenesis of autoimmune liver disease[J]. Dig Dis, 2016, 34(4): 327-333. DOI: 10.1159/000444471.
|
[10] |
HERBIN O, BONITO AJ, JEONG S, et al. Medullary thymic epithelial cells and CD8α(+) dendritic cells coordinately regulate central tolerance but CD8α(+) cells are dispensable for thymic regulatory T cell production[J]. J Autoimmun, 2016, 75: 141-149. DOI: 10.1016/j.jaut.2016.08.002.
|
[11] |
RIEMANN M, ANDREAS N, FEDOSEEVA M, et al. Central immune tolerance depends on crosstalk between the classical and alternative NF-κB pathways in medullary thymic epithelial cells[J]. J Autoimmun, 2017, 81: 56-67. DOI: 10.1016/j.jaut.2017.03.007.
|
[12] |
SOZZANI S, DEL PRETE A, BOSISIO D. Dendritic cell recruitment and activation in autoimmunity[J]. J Autoimmun, 2017, 85: 126-140. DOI: 10.1016/j.jaut.2017.07.012.
|
[13] |
ZHANG C, TIAN Z. NK cell subsets in autoimmune diseases[J]. J Autoimmun, 2017, 83: 22-30. DOI: 10.1016/j.jaut.2017.02.005.
|
[14] |
YU ZJ, HE ZB. Advances in research of autoimmune hepatitis[J]. Chin J Immunol, 2019, 35(22): 2813-2818. DOI: 10.3969/j.issn.1000-484X.2019.22.025.
余真君, 何泽宝. 自身免疫性肝炎研究进展[J]. 中国免疫学杂志, 2019, 35(22): 2813-2818. DOI: 10.3969/j.issn.1000-484X.2019.22.025.
|
[15] |
MIELI-VERGANI G, VERGANI D, CZAJA AJ, et al. Autoimmune hepatitis[J]. Nat Rev Dis Primers, 2018, 4: 18017. DOI: 10.1038/nrdp.2018.17.
|
[16] |
MOY L, LEVINE J. Autoimmune hepatitis: A classic autoimmune liver disease[J]. Curr Probl Pediatr Adolesc Health Care, 2014, 44(11): 341-346. DOI: 10.1016/j.cppeds.2014.10.005.
|
[17] |
LIBERAL R, VERGANI D, MIELI-VERGANI G. Update on autoimmune hepatitis[J]. J Clin Transl Hepatol, 2015, 3(1): 42-52. DOI: 10.14218/JCTH.2014.00032.
|
[18] |
DOHERTY DG. Immunity, tolerance and autoimmunity in the liver: A comprehensive review[J]. J Autoimmun, 2016, 66: 60-75. DOI: 10.1016/j.jaut.2015.08.020.
|
[19] |
SINGER BD, KING LS, D'ALESSIO FR. Regulatory T cells as immunotherapy[J]. Front Immunol, 2014, 5: 46. DOI: 10.3389/fimmu.2014.00046.
|
[20] |
HORI S, NOMURA T, SAKAGUCHI S. Control of regulatory T cell development by the transcription factor Foxp3[J]. Science, 2003, 299(5609): 1057-1061. DOI: 10.1126/science.1079490.
|
[21] |
KARIM M, KINGSLEY CI, BUSHELL AR, et al. Alloantigen-induced CD25+CD4+ regulatory T cells can develop in vivo from CD25-CD4+ precursors in a thymus-independent process[J]. J Immunol, 2004, 172(2): 923-928. DOI: 10.4049/jimmunol.172.2.923.
|
[22] |
LAN Q, FAN H, QUESNIAUX V, et al. Induced Foxp3(+) regulatory T cells: A potential new weapon to treat autoimmune and inflammatory diseases?[J]. J Mol Cell Biol, 2012, 4(1): 22-28. DOI: 10.1093/jmcb/mjr039.
|
[23] |
WAN YY, FLAVELL RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression[J]. Nature, 2007, 445(7129): 766-770. DOI: 10.1038/nature05479.
|
[24] |
CHEN J, LIU W, ZHU W. Foxp3+ treg cells are associated with pathological process of autoimmune hepatitis by activating methylation modification in autoimmune hepatitis patients[J]. Med Sci Monit, 2019, 25: 6204-6212. DOI: 10.12659/MSM.915408.
|
[25] |
WANG WZ, XIANG XX. Immunological mechanismof Treg/Th17 and Th1/Th2 balance in autoimmune hepatitisand new targets for diagnosis and treatment[J]. J Clin Hepatol, 2019, 35(8): 1874-1877. DOI: 10.3969/j.issn.1001-5256.2019.08.051.
王维钊, 向晓星. Treg/Th17、Th1 /Th2平衡在自身免疫性肝炎中的免疫学机制及诊疗新靶点[J]. 临床肝胆病杂志, 2019, 35(8): 1874-1877. DOI: 10.3969/j.issn.1001-5256.2019.08.051.
|
[26] |
GRANT CR, LIBERAL R, HOLDER BS, et al. Dysfunctional CD39(POS) regulatory T cells and aberrant control of T-helper type 17 cells in autoimmune hepatitis[J]. Hepatology, 2014, 59(3): 1007-1015. DOI: 10.1002/hep.26583.
|
[27] |
LIANG M, LIWEN Z, YUN Z, et al. The imbalance between Foxp3(+)tregs and Th1/Th17/Th22 cells in patients with newly diagnosed autoimmune hepatitis[J]. J Immunol Res, 2018, 2018: 3753081. DOI: 10.1155/2018/3753081.
|
[28] |
JOHN K, HARDTKE-WOLENSKI M, JAECKEL E, et al. Increased apoptosis of regulatory T cells in patients with active autoimmune hepatitis[J]. Cell Death Dis, 2017, 8(12): 3219. DOI: 10.1038/s41419-017-0010-y.
|
[29] |
HAO X, LI Y, WANG J, et al. Deficient O-GlcNAc glycosylation impairs regulatory T cell differentiation and notch signaling in autoimmune hepatitis[J]. Front Immunol, 2018, 9: 2089. DOI: 10.3389/fimmu.2018.02089.
|
[30] |
LIU Y, YAN W, YUAN W, et al. Treg/Th17 imbalance is associated with poor autoimmune hepatitis prognosis[J]. Clin Immunol, 2019, 198: 79-88. DOI: 10.1016/j.clim.2018.11.003.
|
[31] |
PEISELER M, SEBODE M, FRANKE B, et al. FOXP3+ regulatory T cells in autoimmune hepatitis are fully functional and not reduced in frequency[J]. J Hepatol, 2012, 57(1): 125-132. DOI: 10.1016/j.jhep.2012.02.029.
|
[32] |
QIU R, ZHOU L, MA Y, et al. Regulatory T cell plasticity and stability and autoimmune diseases[J]. Clin Rev Allergy Immunol, 2020, 58(1): 52-70. DOI: 10.1007/s12016-018-8721-0.
|
[33] |
SHARABI A, TSOKOS MG, DING Y, et al. Regulatory T cells in the treatment of disease[J]. Nat Rev Drug Discov, 2018, 17(11): 823-844. DOI: 10.1038/nrd.2018.148.
|
[34] |
OO YH, ACKRILL S, COLE R, et al. Liver homing of clinical grade Tregs after therapeutic infusion in patients with autoimmune hepatitis[J]. JHEP Rep, 2019, 1(4): 286-296. DOI: 10.1016/j.jhepr.2019.08.001.
|
[35] |
HARRINGTON LE, HATTON RD, MANGAN PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005, 6(11): 1123-1132. DOI: 10.1038/ni1254.
|
[36] |
PARK H, LI Z, YANG XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nat Immunol, 2005, 6(11): 1133-1141. DOI: 10.1038/ni1261.
|
[37] |
WU B, WAN Y. Molecular control of pathogenic Th17 cells in autoimmune diseases[J]. Int Immunopharmacol, 2020, 80: 106187. DOI: 10.1016/j.intimp.2020.106187.
|
[38] |
GAGLIANI N, AMEZCUA VESELY MC, ISEPPON A, et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation[J]. Nature, 2015, 523(7559): 221-225. DOI: 10.1038/nature14452.
|
[39] |
LIU YJ, WANG GC. Relationship of MCP-1, chronic hepatic disease and its complications[J/CD]. Chin J Hepatol(Electronic Version), 2017, 9(4): 31-37. DOI: 10.3969/j.issn.1674-7380.2017.04.005.
刘英娇, 王拱辰. 单核细胞趋化蛋白-1与慢性肝病及其并发症的相关性[J/CD]. 中国肝脏病杂志(电子版), 2017, 9(4): 31-37. DOI: 10.3969/j.issn.1674-7380.2017.04.005.
|
[40] |
ZHAO L, TANG Y, YOU Z, et al. Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 expression[J]. PLoS One, 2011, 6(4): e18909. DOI: 10.1371/journal.pone.0018909.
|
[41] |
OO YH, BANZ V, KAVANAGH D, et al. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver[J]. J Hepatol, 2012, 57(5): 1044-1051. DOI: 10.1016/j.jhep.2012.07.008.
|
[42] |
KI SH, PARK O, ZHENG M, et al. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: Role of signal transducer and activator of transcription 3[J]. Hepatology, 2010, 52(4): 1291-1300. DOI: 10.1002/hep.23837.
|
[43] |
BETTELLI E, CARRIER Y, GAO W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J]. Nature, 2006, 441(7090): 235-238. DOI: 10.1038/nature04753.
|
[44] |
LIBERAL R, GRANT CR, MA Y, et al. CD39 mediated regulation of Th17-cell effector function is impaired in juvenile autoimmune liver disease[J]. J Autoimmun, 2016, 72: 102-112. DOI: 10.1016/j.jaut.2016.05.005.
|
[45] |
HU ED, CHEN DZ, WU JL, et al. High fiber dietary and sodium butyrate attenuate experimental autoimmune hepatitis through regulation of immune regulatory cells and intestinal barrier[J]. Cell Immunol, 2018, 328: 24-32. DOI: 10.1016/j.cellimm.2018.03.003.
|
[46] |
KOMATSU N, OKAMOTO K, SAWA S, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis[J]. Nat Med, 2014, 20(1): 62-68. DOI: 10.1038/nm.3432.
|
[47] |
FENG TT, ZOU T, WANG X, et al. Clinical significance of changes in the Th17/Treg ratio in autoimmune liver disease[J]. World J Gastroenterol, 2017, 23(21): 3832-3838. DOI: 10.3748/wjg.v23.i21.3832.
|
[48] |
ZHA XJ, XIAN YT. Expressions of miR-21 and miR-155 in peripheral blood of patients with autoimmune liver disease and their relationships with Th17 and Treg cell balance[J]. Chin J Gastroenterol Hepatol, 2020, 29(5): 581-586. DOI: 10.3969/j.issn.1006-5709.2020.05.022.
扎西吉, 咸育婷. 自身免疫性肝病患者外周血miR-21、miR-155表达及其与Th17、Treg细胞平衡的关系[J]. 胃肠病学和肝病学杂志, 2020, 29(5): 581-586. DOI: 10.3969/j.issn.1006-5709.2020.05.022.
|
[49] |
GAO LP, MAO XR. Study on the imbalance between T helper cell 17 and regulatory cells in autoimmune hepatitis model of rats[J]. Chin J Clin Pharmacol, 2020, 36(19): 3021-3025. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYZ202019017.htm
高丽萍, 毛小荣. 辅助性T细胞17/调节性T细胞失衡在大鼠自身免疫性肝炎模型中的研究[J]. 中国临床药理学杂志, 2020, 36(19): 3021-3025. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYZ202019017.htm
|
[50] |
HUANG H, DENG Z. Adoptive transfer of regulatory T cells stimulated by Allogeneic Hepatic Stellate Cells mitigates liver injury in mice with concanavalin A-induced autoimmune hepatitis[J]. Biochem Biophys Res Commun, 2019, 512(1): 14-21. DOI: 10.1016/j.bbrc.2019.02.147.
|
[51] |
XIA G, WU S, WANG X, et al. Inhibition of microRNA-155 attenuates concanavalin-A-induced autoimmune hepatitis by regulating Treg/Th17 cell differentiation[J]. Can J Physiol Pharmacol, 2018, 96(12): 1293-1300. DOI: 10.1139/cjpp-2018-0467.
|