[1] |
ROCHA AL, OLIVEIRA FR, AZEVEDO RC, et al. Recent advances in the understanding and management of polycystic ovary syndrome[J]. F1000Res, 2019, 8: F1000 Faculty Rev-565. DOI: 10.12688/f1000research.15318.1.
|
[2] |
CONWAY G, DEWAILLY D, DIAMANTI-KANDARAKIS E, et al. The polycystic ovary syndrome: A position statement from the European Society of Endocrinology[J]. Eur J Endocrinol, 2014, 171(4): p1-p29. DOI: 10.1530/EJE-14-0253.
|
[3] |
WANG J, WU D, GUO H, et al. Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome[J]. Life Sci, 2019, 236: 116940. DOI: 10.1016/j.lfs.2019.116940.
|
[4] |
ZENG X, XIE YJ, LIU YT, et al. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity[J]. Clin Chim Acta, 2020, 502: 214-221. DOI: 10.1016/j.cca.2019.11.003.
|
[5] |
IGNATOV A, ORTMANN O. Endocrine risk factors of endometrial cancer: Polycystic ovary syndrome, oral contraceptives, infertility, tamoxifen[J]. Cancers (Basel), 2020, 12(7): 1766. DOI: 10.3390/cancers12071766.
|
[6] |
SUNAMI Y. NASH, Fibrosis and hepatocellular carcinoma: Lipid synthesis and glutamine/acetate signaling[J]. Int J Mol Sci, 2020, 21(18): 6799. DOI: 10.3390/ijms21186799.
|
[7] |
PAFILI K, RODEN M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans[J]. Mol Metab, 2021, 50: 101122. DOI: 10.1016/j.molmet.2020.101122.
|
[8] |
SALVA-PASTOR N, LÓPEZ-SÁNCHEZ GN, CHÁVEZ-TAPIA NC, et al. Polycystic ovary syndrome with feasible equivalence to overweight as a risk factor for non-alcoholic fatty liver disease development and severity in Mexican population[J]. Ann Hepatol, 2020, 19(3): 251-257. DOI: 10.1016/j.aohep.2020.01.004.
|
[9] |
ZHANG J, HU J, ZHANG C, et al. Analyses of risk factors for polycystic ovary syndrome complicated with non-alcoholic fatty liver disease[J]. Exp Ther Med, 2018, 15(5): 4259-4264. DOI: 10.3892/etm.2018.5932.
|
[10] |
SARKAR M, TERRAULT N, CHAN W, et al. Polycystic ovary syndrome (PCOS) is associated with NASH severity and advanced fibrosis[J]. Liver Int, 2020, 40(2): 355-359. DOI: 10.1111/liv.14279.
|
[11] |
QIAN ZW, YAO Q, ZHOU G, et al. Advances in neuroendocrine mechanism of polycystic ovary syndrome[J]. J Int Reprod Health/Fam Plan, 2021, 40(1): 79-83. DOI: 10.12280/gjszjk.20200249.
钱紫薇, 姚琦, 周阁, 等. 多囊卵巢综合征神经内分泌病因机制的研究进展[J]. 国际生殖健康/计划生育杂志, 2021, 40(1): 79-83. DOI: 10.12280/gjszjk.20200249
|
[12] |
WU J, YAO XY, SHI RX, et al. A potential link between polycystic ovary syndrome and non-alcoholic fatty liver disease: An update meta-analysis[J]. Reprod Health, 2018, 15(1): 77. DOI: 10.1186/s12978-018-0519-2.
|
[13] |
BARANOVA A, TRAN TP, AFENDY A, et al. Molecular signature of adipose tissue in patients with both non-alcoholic fatty liver disease (NAFLD) and polycystic ovarian syndrome (PCOS)[J]. J Transl Med, 2013, 11: 133. DOI: 10.1186/1479-5876-11-133.
|
[14] |
SAEZ-LOPEZ C, BARBOSA-DESONGLES A, HERNANDEZ C, et al. Sex hormone-binding globulin reduction in metabolic disorders may play a role in NAFLD development[J]. Endocrinology, 2017, 158(3): 545-559. DOI: 10.1210/en.2016-1668.
|
[15] |
ZHANG Y, MENG F, SUN X, et al. Hyperandrogenism and insulin resistance contribute to hepatic steatosis and inflammation in female rat liver[J]. Oncotarget, 2018, 9(26): 18180-18197. DOI: 10.18632/oncotarget.24477.
|
[16] |
CONDORELLI RA, CALOGERO AE, DI MAURO M, et al. Androgen excess and metabolic disorders in women with PCOS: Beyond the body mass index[J]. J Endocrinol Invest, 2018, 41(4): 383-388. DOI: 10.1007/s40618-017-0762-3.
|
[17] |
WELT CK, DURAN JM. Genetics of polycystic ovary syndrome[J]. Semin Reprod Med, 2014, 32(3): 177-182. DOI: 10.1055/s-0034-1371089.
|
[18] |
LU CY, QIAN Y. Mechanisms and drug therapy of insulin resistance in polycystic ovary syndrome[J]. Medical Recapitulate, 2020, 26(22): 4504-4509, 4514. DOI: 10.3969/j.issn.1006-2084.2020.22.026.
陆超亦, 钱云. 多囊卵巢综合征胰岛素抵抗机制与药物治疗[J]. 医学综述, 2020, 26(22): 4504-4509, 4514. DOI: 10.3969/j.issn.1006-2084.2020.22.026.
|
[19] |
HARSHA VARMA S, TIRUPATI S, PRADEEP T, et al. Insulin resistance and hyperandrogenemia independently predict nonalcoholic fatty liver disease in women with polycystic ovary syndrome[J]. Diabetes Metab Syndr, 2019, 13(2): 1065-1069. DOI: 10.1016/j.dsx.2018.12.020.
|
[20] |
BUZZETTI E, PINZANI M, TSOCHATZIS EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048. DOI: 10.1016/j.metabol.2015.12.012.
|
[21] |
HIGUCHI N, KATO M, TANAKA M, et al. Effects of insulin resistance and hepatic lipid accumulation on hepatic mRNA expression levels of apoB, MTP and L-FABP in non-alcoholic fatty liver disease[J]. Exp Ther Med, 2011, 2(6): 1077-1081. DOI: 10.3892/etm.2011.328.
|
[22] |
CHATTERJEE A, BASU A, DAS K, et al. Hepatic transcriptome signature correlated with HOMA-IR explains early nonalcoholic fatty liver disease pathogenesis[J]. Ann Hepatol, 2020, 19(5): 472-481. DOI: 10.1016/j.aohep.2020.06.009.
|
[23] |
FURUHASHI M, SAITOH S, SHIMAMOTO K, et al. Fatty acid-binding protein 4 (FABP4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases[J]. Clin Med Insights Cardiol, 2014, 8(Suppl 3): 23-33. DOI: 10.4137/CMC.S17067.
|
[24] |
MOYLAN CA, PANG H, DELLINGER A, et al. Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe nonalcoholic fatty liver disease[J]. Hepatology, 2014, 59(2): 471-482. DOI: 10.1002/hep.26661.
|
[25] |
XIE LD, ZHANG YN, GONG LF, et al. Pathogenesis of polycystic ovary syndrome with insulin resistance[J]. Matern Child Health Care China, 2019, 34(8): 1926-1929. DOI: 10.7620/zgfybj.j.issn.1001-4411.2019.08.75.
谢来娣, 张伊娜, 龚丽芬, 等. 多囊卵巢综合征伴胰岛素抵抗相关发病机制研究[J]. 中国妇幼保健, 2019, 34(8): 1926-1929. DOI: 10.7620/zgfybj.j.issn.1001-4411.2019.08.75.
|
[26] |
SHENGIR M, KRISHNAMURTHY S, GHALI P, et al. Prevalence and predictors of nonalcoholic fatty liver disease in South Asian women with polycystic ovary syndrome[J]. World J Gastroenterol, 2020, 26(44): 7046-7060. DOI: 10.3748/wjg.v26.i44.7046.
|
[27] |
O'REILLY MW, HOUSE PJ, TOMLINSON JW. Understanding androgen action in adipose tissue[J]. J Steroid Biochem Mol Biol, 2014, 143: 277-284. DOI: 10.1016/j.jsbmb.2014.04.008.
|
[28] |
BARBER TM, HANSON P, WEICKERT MO, et al. Obesity and polycystic ovary syndrome: Implications for pathogenesis and novel management strategies[J]. Clin Med Insights Reprod Health, 2019, 13: 1179558119874042. DOI: 10.1177/1179558119874042.
|
[29] |
HU W, LI L, YANG M, et al. Circulating Sfrp5 is a signature of obesity-related metabolic disorders and is regulated by glucose and liraglutide in humans[J]. J Clin Endocrinol Metab, 2013, 98(1): 290-298. DOI: 10.1210/jc.2012-2466.
|
[30] |
WANG GX, ZHAO XY, MENG ZX, et al. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis[J]. Nat Med, 2014, 20(12): 1436-1443. DOI: 10.1038/nm.3713.
|
[31] |
CHANG ML, YANG Z, YANG SS. Roles of adipokines in digestive diseases: Markers of inflammation, metabolic alteration and disease progression[J]. Int J Mol Sci, 2020, 21(21). DOI: 10.3390/ijms21218308.
|
[32] |
MAFFAZIOLI G, LOPES CP, HEINRICH-OLIVEIRA V, et al. Prevalence of metabolic disturbances among women with polycystic ovary syndrome in different regions of Brazil[J]. Int J Gynaecol Obstet, 2020, 151(3): 383-391. DOI: 10.1002/ijgo.13374.
|
[33] |
TARANTO D, GUIMARÃES T, COUTO CA, et al. Nonalcoholic fatty liver disease in women with polycystic ovary syndrome: Associated factors and noninvasive fibrosis staging in a single Brazilian center[J]. Arch Endocrinol Metab, 2020, 64(3): 235-242. DOI: 10.20945/2359-3997000000242.
|
[34] |
MARÍ M, CABALLERO F, COLELL A, et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis[J]. Cell Metab, 2006, 4(3): 185-198. DOI: 10.1016/j.cmet.2006.07.006.
|
[35] |
IOANNOU GN, SUBRAMANIAN S, CHAIT A, et al. Cholesterol crystallization within hepatocyte lipid droplets and its role in murine NASH[J]. J Lipid Res, 2017, 58(6): 1067-1079. DOI: 10.1194/jlr.M072454.
|
[36] |
TOMITA K, TERATANI T, SUZUKI T, et al. Acyl-CoA: Cholesterol acyltransferase 1 mediates liver fibrosis by regulating free cholesterol accumulation in hepatic stellate cells[J]. J Hepatol, 2014, 61(1): 98-106. DOI: 10.1016/j.jhep.2014.03.018.
|
[37] |
RUDNICKA E, KUNICKI M, SUCHTA K, et al. Inflammatory markers in women with polycystic ovary syndrome[J]. Biomed Res Int, 2020, 2020: 4092470. DOI: 10.1155/2020/4092470.
|
[38] |
SPRITZER PM, LECKE SB, SATLER F, et al. Adipose tissue dysfunction, adipokines, and low-grade chronic inflammation in polycystic ovary syndrome[J]. Reproduction, 2015, 149(5): r219-r227. DOI: 10.1530/REP-14-0435.
|
[39] |
KRISHNAN A, MUTHUSAMI S, PERIYASAMY L, et al. Effect of DHT-induced hyperandrogenism on the pro-inflammatory cytokines in a rat model of polycystic ovary morphology[J]. Medicina (Kaunas), 2020, 56(3): 100. DOI: 10.3390/medicina56030100.
|
[40] |
GARCIA-BELTRAN C, MALPIQUE R, CARBONETTO B, et al. Gut microbiota in adolescent girls with polycystic ovary syndrome: Effects of randomized treatments[J]. Pediatr Obes, 2021, 16(4): e12734. DOI: 10.1111/ijpo.12734.
|
[41] |
CHU W, HAN Q, XU J, et al. Metagenomic analysis identified microbiome alterations and pathological association between intestinal microbiota and polycystic ovary syndrome[J]. Fertil Steril, 2020, 113(6): 1286-1298. e4. DOI: 10.1016/j.fertnstert.2020.01.027.
|
[42] |
ZHOU L, NI Z, YU J, et al. Correlation between fecal metabolomics and gut microbiota in obesity and polycystic ovary syndrome[J]. Front Endocrinol (Lausanne), 2020, 11: 628. DOI: 10.3389/fendo.2020.00628.
|