[1] |
SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
|
[2] |
DHIR M, MELIN AA, DOUAIHER J, et al. A review and update of treatment options and controversies in the management of hepatocellular carcinoma[J]. Ann Surg, 2016, 263(6): 1112-1125. DOI: 10.1097/SLA.0000000000001556.
|
[3] |
LIU JF, LIU HZ, CHEN ZW, et al. Construction system and preliminary application of big data platform for liver disease and liver cancer[J]. Chin J Dig Surg, 2021, 20(1): 46-51. DOI: 10.3760/cma.j.cn115610-20201126-00742.
刘景丰, 刘红枝, 陈振伟, 等. 肝病和肝癌大数据平台建设体系及其初步应用[J]. 中华消化外科杂志, 2021, 20(1): 46-51. DOI: 10.3760/cma.j.cn115610-20201126-00742.
|
[4] |
European Association for the Study of the Liver. EASL clinical practice guidelines: Management of hepatocellular carcinoma[J]. J Hepatol, 2018, 69(1): 182-236. DOI: 10.1016/j.jhep.2018.03.019.
|
[5] |
CHOI GH, YUN J, CHOI J, et al. Development of machine learning-based clinical decision support system for hepatocellular carcinoma[J]. Sci Rep, 2020, 10(1): 14855. DOI: 10.1038/s41598-020-71796-z.
|
[6] |
LIU F, LIU D, WANG K, et al. Deep learning radiomics based on contrast-enhanced ultrasound might optimize curative treatments for very-early or early-stage hepatocellular carcinoma patients[J]. Liver Cancer, 2020, 9(4): 397-413. DOI: 10.1159/000505694.
|
[7] |
FU S, WEI J, ZHANG J, et al. Selection between liver resection versus transarterial chemoembolization in hepatocellular carcinoma: A multicenter study[J]. Clin Transl Gastroenterol, 2019, 10(8): e00070. DOI: 10.14309/ctg.0000000000000070.
|
[8] |
FANG CH, ZHANG P, ZHOU WP, et al. Efficacy of three-dimensional visualization technology in the precision diagnosis and treatment for primary liver cancer: A retrospective multicenter study of 1 665 cases in China[J]. Chin J Surg, 2020, 58(5): 375-382. DOI: 10.3760/cma.j.cn112139-20200220-00105.
方驰华, 张鹏, 周伟平, 等. 三维可视化技术用于1665例原发性肝癌精准诊治的多中心回顾性研究[J]. 中华外科杂志, 2020, 58(5): 375-382. DOI: 10.3760/cma.j.cn112139-20200220-00105.
|
[9] |
Chinese Society of Digital Medicine, Chinese Medical Association; Professional Committee of Digital Intelligent Surgery, Chinese Research Hospital Association; Chinese Society of Liver Cancer, Chinese Medical Doctor Association; et al. Clinical practice guidelines for precision diagnosis and treatment of complex liver tumor guided by three-dimensional visualization technology (version 2019)[J]. Chin J Pract Surg, 2019, 39(8): 11-19. DOI: 10.12122/j.issn.1673-4254.2020.03.01..
中华医学会数字医学分会, 中国研究型医院学会数字智能化外科专业委员会, 中国医师协会肝癌专业委员会, 等. 复杂性肝脏肿瘤切除三维可视化精准诊治指南(2019版)[J]. 中国实用外科杂志, 2019, 39(8): 11-19. DOI:
10.12122/j.issn.1673-4254.2020.03.01.
|
[10] |
XIE LT, GU JH, CHAI WL, et al. Pre-operative detection of liver fibrosis in hepatocellular carcinoma patients using 2D shear wave elastography: Where to measure?[J]. Ultrasound Med Biol, 2020, 46(6): 1412-1423. DOI: 10.1016/j.ultrasmedbio.2020.02.012.
|
[11] |
LEE JH, JOO I, KANG TW, et al. Deep learning with ultrasonography: Automated classification of liver fibrosis using a deep convolutional neural network[J]. Eur Radiol, 2020, 30(2): 1264-1273. DOI: 10.1007/s00330-019-06407-1.
|
[12] |
WANG K, LU X, ZHOU H, et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: A prospective multicentre study[J]. Gut, 2019, 68(4): 729-741. DOI: 10.1136/gutjnl-2018-316204.
|
[13] |
WEI J, JIANG H, GU D, et al. Radiomics in liver diseases: Current progress and future opportunities[J]. Liver Int, 2020, 40(9): 2050-2063. DOI: 10.1111/liv.14555.
|
[14] |
CHEN W, ZHANG T, XU L, et al. Radiomics analysis of contrast-enhanced CT for hepatocellular carcinoma grading[J]. Front Oncol, 2021, (11): 660509. DOI: 10.3389/fonc.2021.660509.
|
[15] |
ZHOU W, WANG G, XIE G, et al. Grading of hepatocellular carcinoma based on diffusion weighted images with multiple b-values using convolutional neural networks[J]. Med Phys, 2019, 46(9): 3951-3960. DOI: 10.1002/mp.13642.
|
[16] |
ZHOU W, JIAN W, CEN X, et al. Prediction of microvascular invasion of hepatocellular carcinoma based on contrast-enhanced MR and 3D convolutional neural networks[J]. Front Oncol, 2021, 11: 588010. DOI: 10.3389/fonc.2021.588010.
|
[17] |
JIANG YQ, CAO SE, CAO S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning[J]. J Cancer Res Clin Oncol, 2021, 147(3): 821-833. DOI: 10.1007/s00432-020-03366-9.
|
[18] |
ZHOU W, JIAN W, CEN X, et al. Prediction of microvascular invasion of hepatocellular carcinoma based on contrast-enhanced MR and 3D convolutional neural networks[J]. Front Oncol, 2021, 11: 588010. DOI: 10.3389/fonc.2021.588010.
|
[19] |
CHEN S, FENG S, WEI J, et al. Pretreatment prediction of immunoscore in hepatocellular cancer: A radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging[J]. Eur Radiol, 2019, 29(8): 4177-4187. DOI: 10.1007/s00330-018-5986-x.
|
[20] |
GU D, XIE Y, WEI J, et al. MRI-based radiomics signature: A potential biomarker for identifying glypican 3-positive hepatocellular carcinoma[J]. J Magn Reson Imaging, 2020, 52(6): 1679-1687. DOI: 10.1002/jmri.27199.
|
[21] |
CHIU CC, LEE KT, LEE HH, et al. Comparison of models for predicting quality of life after surgical resection of hepatocellular carcinoma: A prospective study[J]. J Gastrointest Surg, 2018, 22(10): 1724-1731. DOI: 10.1007/s11605-018-3833-7.
|
[22] |
XU Y, CHEN M, MENG X, et al. Laparoscopic anatomical liver resection guided by real-time indocyanine green fluorescence imaging: Experience and lessons learned from the initial series in a single center[J]. Surg Endosc, 2020, 34(10): 4683-4691. DOI: 10.1007/s00464-020-07691-5.
|
[23] |
LI J, LI X, ZHANG X, et al. Indocyanine green fluorescence imaging-guided laparoscopic right posterior hepatectomy[J]. Surg Endosc, 2021. DOI: 10. 1007/s00464-021-08404-2.[Epub ahead of print]
|
[24] |
BERTRAND LR, ABDALLAH M, ESPINEL Y, et al. A case series study of augmented reality in laparoscopic liver resection with a deformable preoperative model[J]. Surg Endosc, 2020, 34(12): 5642-5648. DOI: 10.1007/s00464-020-07815-x.
|
[25] |
ZOU H, ZHU CZ, WANG C, et al. Application of three-dimensional reconstruction combined with augmented reality technology in precise hepatectomy performed by robot[J]. Chin J Robotic Surg, 2020, 1(2): 141-147. DOI: 10.12180/j.issn.2096-7721.2020.02.009.
邹浩, 朱呈瞻, 王畅, 等. 三维重建结合增强现实技术在机器人下精准肝切除术中的应用[J]. 机器人外科学杂志, 2020, 1(2): 141-147. DOI: 10.12180/j.issn.2096-7721.2020.02.009.
|
[26] |
ZHANG W, ZHU W, YANG J, et al. Augmented reality navigation for stereoscopic laparoscopic anatomical hepatectomy of primary liver cancer: Preliminary experience[J]. Front Oncol, 2021, 11: 663236. DOI: 10.3389/fonc.2021.663236.
|
[27] |
GIORDANO S, TAKEDA S, DONADON M, et al. Rapid automated diagnosis of primary hepatic tumour by mass spectrometry and artificial intelligence[J]. Liver Int, 2020, 40(12): 3117-3124. DOI: 10.1111/liv.14604.
|
[28] |
MERATH K, HYER JM, MEHTA R, et al. Use of machine learning for prediction of patient risk of postoperative complications after liver, pancreatic, and colorectal surgery[J]. J Gastrointest Surg, 2020, 24(8): 1843-1851. DOI: 10.1007/s11605-019-04338-2.
|
[29] |
LIN KC, LIU JF, ZENG JH, et al. Value of a virtual liver surgery planning system in predicting hepatic dysfunction after hepatectomy for liver cancer[J]. Chin J Dig Surg, 2012, 11(2): 116-119. DOI: 10.3760/cma.j.issn.1673-9752.2012.02.007.
林科灿, 刘景丰, 曾金华, 等. 虚拟肝脏手术规划系统预测肝癌肝切除术后肝功能损害的价值[J]. 中华消化外科杂志, 2012, 11(2): 116-119. DOI: 10.3760/cma.j.issn.1673-9752.2012.02.007.
|
[30] |
CAI W, HE B, HU M, et al. A radiomics-based nomogram for the preoperative prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma[J]. Surg Oncol, 2019, 28: 78-85. DOI: 10.1016/j.suronc.2018.11.013.
|
[31] |
ZHU WS, SHI SY, YANG ZH, et al. Radiomics model based on preoperative gadoxetic acid-enhanced MRI for predicting liver failure[J]. World J Gastroenterol, 2020, 26(11): 1208-1220. DOI:10. 748/wjg.v26.i11.1208.
|
[32] |
MAI RY, LU HZ, BAI T, et al. Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in patients with hepatocellular carcinoma[J]. Surgery, 2020, 168(4): 643-652. DOI: 10.1016/j.surg.2020.06.031.
|
[33] |
JI GW, ZHU FP, XU Q, et al. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study[J]. EBioMedicine, 2019, 50: 156-165. DOI: 10.1016/j.ebiom.2019.10.057.
|
[34] |
ZHANG Z, JIANG H, CHEN J, et al. Hepatocellular carcinoma: Radiomics nomogram on gadoxetic acid-enhanced MR imaging for early postoperative recurrence prediction[J]. Cancer Imaging, 2019, 19(1): 22. DOI: 10.1186/s40644-019-0209-5.
|
[35] |
KIM S, SHIN J, KIM DY, et al. Radiomics on gadoxetic acid-enhanced magnetic resonance imaging for prediction of postoperative early and late recurrence of single hepatocellular carcinoma[J]. Clin Cancer Res, 2019, 25(13): 3847-3855. DOI: 10.1158/1078-0432.CCR-18-2861.
|
[36] |
HUANG Y, CHEN H, ZENG Y, et al. Development and validation of a machine learning prognostic model for hepatocellular carcinoma recurrence after surgical resection[J]. Front Oncol, 2020, 10: 593741. DOI: 10.3389/fonc.2020.593741.
|
[37] |
SHINKAWA H, TANAKA S, TAKEMURA S, et al. Nomograms predicting extra- and early intrahepatic recurrence after hepatic resection of hepatocellular carcinoma[J]. Surgery, 2021, 169(4): 922-928. DOI: 10.1016/j.surg.2020.10.012.
|
[38] |
CHEN Y, ZENG J, GUO P, et al. Prognostic significance of platelet-to-lymphocyte ratio (PLR) in extrahepatic metastasis of hepatocellular carcinoma after curative resection[J]. Cancer Manag Res, 2021, 13: 1395-1405. DOI: 10.2147/CMAR.S290738.
|
[39] |
FU S, PAN M, ZHANG J, et al. Deep learning-based prediction of future extrahepatic metastasis and macrovascular invasion in hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2021, 8: 1065-1076. DOI: 10.2147/JHC.S319639.
|
[40] |
ZHANG XP, GAO YZ, CHEN ZH, et al. An eastern hepatobiliary surgery hospital/portal vein tumor thrombus scoring system as an aid to decision making on hepatectomy for hepatocellular carcinoma patients with portal vein tumor thrombus: A multicenter study[J]. Hepatology, 2019, 69(5): 2076-2090. DOI: 10.1002/hep.30490.
|
[41] |
ZHANG XP, WANG K, GAO YZ, et al. Prognostic model for identifying candidates for hepatectomy among patients with hepatocellular carcinoma and hepatic vein invasion[J]. Br J Surg, 2020, 107(7): 865-877. DOI: 10.1002/bjs.11524.
|
[42] |
TSILIMIGRAS DI, MEHTA R, PAREDES AZ, et al. Overall tumor burden dictates outcomes for patients undergoing resection of multinodular hepatocellular carcinoma beyond the milan criteria[J]. Ann Surg, 2020, 272(4): 574-581. DOI: 10.1097/SLA.0000000000004346.
|
[43] |
ZENG J, LIN K, LIU H, et al. Prognosis factors of young patients undergoing curative resection for hepatitis B virus-related hepatocellular carcinoma: A multicenter study[J]. Cancer Manag Res, 2020, 12: 6597-6606. DOI: 10.2147/CMAR.S261368.
|
[44] |
LIN K, HUANG Q, WANG L, et al. Pre- and postoperative models for prediction of recurrence in non-B, non-C hepatocellular carcinoma[J]. Front Oncol, 2021, 11: 612588. DOI: 10.3389/fonc.2021.612588.
|
[45] |
LIN K, HUANG Q, ZENG J, et al. Clinical significance of alpha-fetoprotein in alpha-fetoprotein negative hepatocellular carcinoma underwent curative resection[J]. Dig Dis Sci, 2021, 66(12): 4545-4556. DOI: 10.1007/s10620-020-06797-z.
|
[46] |
LI Y, XIA Y, LI J, et al. Prognostic Nomograms for pre- and postoperative predictions of long-term survival for patients who underwent liver resection for huge hepatocellular carcinoma[J]. J Am Coll Surg, 2015, 221(5): 962-974. e4. DOI: 10.1016/j.jamcollsurg.2015.08.003.
|