中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 1
Jan.  2022
Turn off MathJax
Article Contents

Application of bioinformatics in predicting the risk of hepatocellular carcinoma

DOI: 10.3969/j.issn.1001-5256.2022.01.002
  • Received Date: 2021-11-30
  • Accepted Date: 2021-12-06
  • Published Date: 2022-01-20
  • Bioinformatics is an interdisciplinary science that combines the tools of mathematics, computer science, and biology to clarify and explore the biological implications of large amounts of biological data. With the continuous development of genome sequencing technology, a large number of biological data has been generated, and mining of the biological significance contained in big data has become one of the main tasks that need to be solved urgently. This article summarizes the risk prediction models for hepatocellular carcinoma (HCC) based on feature genes, so as to provide new perspectives for early identification, prognosis, and treatment optimization of HCC.

     

  • loading
  • [1]
    BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countrie[J]. CA Cancer J Clin, 2018 68(6): 394-424. DOI: 10.3322/caac.21492.
    [2]
    de STEFANO F, CHACON E, TURCIOS L, et al. Novel biomarkers in hepatocellular carcinoma[J]. Dig Liver Dis, 2018, 50(11): 1115-1123. DOI: 10.1016/j.dld.2018.08.019.
    [3]
    VOGELSTEIN B, PAPADOPOULOS N, VELCULESCU VE, et al. Cancer genome landscapes[J]. Science, 2013, 339(6127): 1546-1558. DOI: 10.1126/science.1235122.
    [4]
    TOMCZAK K, CZERWIŃSKA P, WIZNEROWICZ M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge[J]. Contemp Oncol (Pozn), 2015, 19(1A): A68-A77. DOI: 10.5114/wo.2014.47136.
    [5]
    DAVIS S, MELTZER PS. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor[J]. Bioinformatics, 2007, 23(14): 1846-1847. DOI: 10.1093/bioinformatics/btm254.
    [6]
    GALON J, BRUNI D. Tumor immunology and tumor evolution: Intertwined histories[J]. Immunity, 2020, 52(1): 55-81. DOI: 10.1016/j.immuni.2019.12.018.
    [7]
    MELERO I, BERMAN DM, AZNAR MA, et al. Evolving synergistic combinations of targeted immunotherapies to combat cancer[J]. Nat Rev Cancer, 2015, 15(8): 457-472. DOI: 10.1038/nrc3973.
    [8]
    CHEN W, OU M, TANG D, et al. Identification and validation of immune-related gene prognostic signature for hepatocellular carcinoma[J]. J Immunol Res, 2020, 2020: 5494858. DOI: 10.1155/2020/5494858.
    [9]
    FENG X, MU S, MA Y, et al. Development and verification of an immune-related gene pairs prognostic signature in hepatocellular carcinoma[J]. Front Mol Biosci, 2021, 8: 715728. DOI: 10.3389/fmolb.2021.715728.
    [10]
    HU B, YANG XB, SANG XT. Molecular subtypes based on immune-related genes predict the prognosis for hepatocellular carcinoma patients[J]. Int Immunopharmacol, 2021, 90: 107164. DOI: 10.1016/j.intimp.2020.107164.
    [11]
    HUANG R, CHEN Z, LI W, et al. Immune system-associated genes increase malignant progression and can be used to predict clinical outcome in patients with hepatocellular carcinoma[J]. Int J Oncol, 2020, 56(5): 1199-1211. DOI: 10.3892/ijo.2020.4998.
    [12]
    WANG K, CHEN X, JIN C, et al. A novel immune-related genes prognosis biomarker for hepatocellular carcinoma[J]. Aging (Albany NY), 2020, 13(1): 675-693. DOI: 10.18632/aging.202173.
    [13]
    HANAHAN D, WEINBERG RA. Hallmarks of cancer: The next generation[J]. Cell, 2011, 144(5): 646-674. DOI: 10.1016/j.cell.2011.02.013.
    [14]
    FENG J, LI J, WU L, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2020, 39(1): 126. DOI: 10.1186/s13046-020-01629-4.
    [15]
    CHEN Z, ZOU Y, ZHANG Y, et al. A novel prognostic signature based on four glycolysis-related genes predicts survival and clinical risk of hepatocellular carcinoma[J]. J Clin Lab Anal, 2021, 35(11): e24005. DOI: 10.1002/jcla.24005.
    [16]
    WANG M, JIANG F, WEI K, et al. Identification of novel gene signature associated with cell glycolysis to predict survival in hepatocellular carcinoma patients[J]. J Oncol, 2021, 2021: 5564525. DOI: 10.1155/2021/5564525.
    [17]
    ZHOU W, ZHANG S, CAI Z, et al. A glycolysis-related gene pairs signature predicts prognosis in patients with hepatocellular carcinoma[J]. PeerJ, 2020, 8: e9944. DOI: 10.7717/peerj.9944.
    [18]
    SANGINETO M, VILLANI R, CAVALLONE F, et al. Lipid metabolism in development and progression of hepatocellular carcinoma[J]. Cancers (Basel), 2020, 12(6): 1419. DOI: 10.3390/cancers12061419.
    [19]
    WANG W, ZHANG C, YU Q, et al. Development of a novel lipid metabolism-based risk score model in hepatocellular carcinoma patients[J]. BMC Gastroenterol, 2021, 21(1): 68. DOI: 10.1186/s12876-021-01638-3.
    [20]
    TSUN ZY, POSSEMATO R. Amino acid management in cancer[J]. Semin Cell Dev Biol, 2015, 43: 22-32. DOI: 10.1016/j.semcdb.2015.08.002.
    [21]
    LUKEY MJ, KATT WP, CERIONE RA. Targeting amino acid metabolism for cancer therapy[J]. Drug Discov Today, 2017, 22(5): 796-804. DOI: 10.1016/j.drudis.2016.12.003.
    [22]
    LEE DY, KIM EH. Therapeutic effects of amino acids in liver diseases: Current studies and future perspectives[J]. J Cancer Prev, 2019, 24(2): 72-78. DOI: 10.15430/JCP.2019.24.2.72.
    [23]
    DEJONG CH, van de POLL MC, SOETERS PB, et al. Aromatic amino acid metabolism during liver failure[J]. J Nutr, 2007, 137(6 Suppl 1): 1579S-1585S; discussion 1597S-1598S. DOI: 10.1093/jn/137.6.1579S.
    [24]
    ZHAO Y, ZHANG J, WANG S, et al. Identification and validation of a nine-gene amino acid metabolism-related risk signature in HCC[J]. Front Cell Dev Biol, 2021, 9: 731790. DOI: 10.3389/fcell.2021.731790.
    [25]
    WU J, WANG Y, JIANG R, et al. Ferroptosis in liver disease: New insights into disease mechanisms[J]. Cell Death Discov, 7(1): 276. DOI: 10.1038/s41420-021-00660-4.
    [26]
    LIANG JY, WANG DS, LIN HC, et al. A novel ferroptosis-related gene signature for overall survival prediction in patients with hepatocellular[J]. Int J Biol Sci, 2020, 16(13): 2430-2441. DOI: 10.7150/ijbs.45050.
    [27]
    WAN S, LEI Y, LI M, et al. A prognostic model for hepatocellular carcinoma patients based on signature ferroptosis-related genes[J]. Hepatol Int, 2021. DOI: 10.1007/s12072-021-10248-w.[Epub ahead of print]
    [28]
    CHEN ZA, TIAN H, YAO DM, et al. Identification of a ferroptosis-related signature model including mRNAs and lncRNAs for predicting prognosis and immune activity in hepatocellular carcinoma[J]. Front Oncol, 2021, 11: 738477. DOI: 10.3389/fonc.2021.738477.
    [29]
    LIANG J, ZHI Y, DENG W, et al. Development and validation of ferroptosis-related lncRNAs signature for hepatocellular carcinoma[J]. Peer J, 2021, 9: e11627. DOI: 10.7717/peerj.11627.
    [30]
    XU Z, PENG B, LIANG Q, et al. Construction of a Ferroptosis-Related Nine-lncRNA Signature for predicting prognosis and immune response in hepatocellular carcinoma[J]. Front Immunol, 2021, 12: 719175. DOI: 10.3389/fimmu.2021.719175.
    [31]
    LEVY JMM, TOWERS CG, THORBURN A. Targeting autophagy in cancer[J]. Nat Rev Cancer, 2017, 17(9): 528-542. DOI: 10.1038/nrc.2017.53.
    [32]
    AMARAVADI RK, KIMMELMAN AC, DEBNATH J. Targeting autophagy in cancer: Recent advances and future directions[J]. Cancer Discov, 2019, 9(9): 1167-1181. DOI: 10.1158/2159-8290.CD-19-0292.
    [33]
    HUO X, QI J, HUANG K, et al. Identification of an autophagy-related gene signature that can improve prognosis of hepatocellular carcinoma patients[J]. BMC Cancer, 2020, 20(1): 771. DOI: 10.1186/s12885-020-07277-3.
    [34]
    YANG W, NIU L, ZHAO X, et al. Development and validation of a survival model based on autophagy-associated genes for predicting prognosis of hepatocellular carcinoma[J]. Am J Transl Res, 2020, 12(10): 6705-6722.
    [35]
    CAO J, WU L, LEI X, et al. A signature of 13 autophagy related gene pairs predicts prognosis in hepatocellular carcinoma[J]. Bioengineered, 2021, 12(1): 697-707. DOI: 10.1080/21655979.2021.1880084.
    [36]
    WU H, LIU T, QI J, et al. Four autophagy-related lncRNAs predict the prognosis of HCC through coexpression and ceRNA mechanism[J]. Biomed Res Int, 2020, 2020: 3801748. DOI: 10.1155/2020/3801748.
    [37]
    YANG S, ZHOU Y, ZHANG X, et al. The prognostic value of an autophagy-related lncRNA signature in hepatocellular carcinoma[J]. BMC Bioinformatics, 2021, 22(1): 217. DOI: 10.1186/s12859-021-04123-6.
    [38]
    CHEN XY, ZHANG J, ZHU JS. The role of m6A RNA methylation in human cancer[J]. Mol Cancer, 2019, 18(1): 103. DOI: 10.1186/s12943-019-1033-z.
    [39]
    ZHANG L, QIAO Y, HUANG J, et al. Expression pattern and prognostic value of key regulators for m6A RNA modification in hepatocellular carcinoma[J]. Front Med (Lausanne), 2020, 7: 556. DOI: 10.3389/fmed.2020.00556.
    [40]
    XU Y, HE X, DENG J, et al. Comprehensive analysis of the immune infiltrates and PD-L1 of m6A RNA methylation regulators in hepatocellular carcinoma[J]. Front Cell Dev Biol, 2021, 9: 681745. DOI: 10.3389/fcell.2021.681745.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (898) PDF downloads(151) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return