[1] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countrie[J]. CA Cancer J Clin, 2018 68(6): 394-424. DOI: 10.3322/caac.21492.
|
[2] |
de STEFANO F, CHACON E, TURCIOS L, et al. Novel biomarkers in hepatocellular carcinoma[J]. Dig Liver Dis, 2018, 50(11): 1115-1123. DOI: 10.1016/j.dld.2018.08.019.
|
[3] |
VOGELSTEIN B, PAPADOPOULOS N, VELCULESCU VE, et al. Cancer genome landscapes[J]. Science, 2013, 339(6127): 1546-1558. DOI: 10.1126/science.1235122.
|
[4] |
TOMCZAK K, CZERWIŃSKA P, WIZNEROWICZ M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge[J]. Contemp Oncol (Pozn), 2015, 19(1A): A68-A77. DOI: 10.5114/wo.2014.47136.
|
[5] |
DAVIS S, MELTZER PS. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor[J]. Bioinformatics, 2007, 23(14): 1846-1847. DOI: 10.1093/bioinformatics/btm254.
|
[6] |
GALON J, BRUNI D. Tumor immunology and tumor evolution: Intertwined histories[J]. Immunity, 2020, 52(1): 55-81. DOI: 10.1016/j.immuni.2019.12.018.
|
[7] |
MELERO I, BERMAN DM, AZNAR MA, et al. Evolving synergistic combinations of targeted immunotherapies to combat cancer[J]. Nat Rev Cancer, 2015, 15(8): 457-472. DOI: 10.1038/nrc3973.
|
[8] |
CHEN W, OU M, TANG D, et al. Identification and validation of immune-related gene prognostic signature for hepatocellular carcinoma[J]. J Immunol Res, 2020, 2020: 5494858. DOI: 10.1155/2020/5494858.
|
[9] |
FENG X, MU S, MA Y, et al. Development and verification of an immune-related gene pairs prognostic signature in hepatocellular carcinoma[J]. Front Mol Biosci, 2021, 8: 715728. DOI: 10.3389/fmolb.2021.715728.
|
[10] |
HU B, YANG XB, SANG XT. Molecular subtypes based on immune-related genes predict the prognosis for hepatocellular carcinoma patients[J]. Int Immunopharmacol, 2021, 90: 107164. DOI: 10.1016/j.intimp.2020.107164.
|
[11] |
HUANG R, CHEN Z, LI W, et al. Immune system-associated genes increase malignant progression and can be used to predict clinical outcome in patients with hepatocellular carcinoma[J]. Int J Oncol, 2020, 56(5): 1199-1211. DOI: 10.3892/ijo.2020.4998.
|
[12] |
WANG K, CHEN X, JIN C, et al. A novel immune-related genes prognosis biomarker for hepatocellular carcinoma[J]. Aging (Albany NY), 2020, 13(1): 675-693. DOI: 10.18632/aging.202173.
|
[13] |
HANAHAN D, WEINBERG RA. Hallmarks of cancer: The next generation[J]. Cell, 2011, 144(5): 646-674. DOI: 10.1016/j.cell.2011.02.013.
|
[14] |
FENG J, LI J, WU L, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2020, 39(1): 126. DOI: 10.1186/s13046-020-01629-4.
|
[15] |
CHEN Z, ZOU Y, ZHANG Y, et al. A novel prognostic signature based on four glycolysis-related genes predicts survival and clinical risk of hepatocellular carcinoma[J]. J Clin Lab Anal, 2021, 35(11): e24005. DOI: 10.1002/jcla.24005.
|
[16] |
WANG M, JIANG F, WEI K, et al. Identification of novel gene signature associated with cell glycolysis to predict survival in hepatocellular carcinoma patients[J]. J Oncol, 2021, 2021: 5564525. DOI: 10.1155/2021/5564525.
|
[17] |
ZHOU W, ZHANG S, CAI Z, et al. A glycolysis-related gene pairs signature predicts prognosis in patients with hepatocellular carcinoma[J]. PeerJ, 2020, 8: e9944. DOI: 10.7717/peerj.9944.
|
[18] |
SANGINETO M, VILLANI R, CAVALLONE F, et al. Lipid metabolism in development and progression of hepatocellular carcinoma[J]. Cancers (Basel), 2020, 12(6): 1419. DOI: 10.3390/cancers12061419.
|
[19] |
WANG W, ZHANG C, YU Q, et al. Development of a novel lipid metabolism-based risk score model in hepatocellular carcinoma patients[J]. BMC Gastroenterol, 2021, 21(1): 68. DOI: 10.1186/s12876-021-01638-3.
|
[20] |
TSUN ZY, POSSEMATO R. Amino acid management in cancer[J]. Semin Cell Dev Biol, 2015, 43: 22-32. DOI: 10.1016/j.semcdb.2015.08.002.
|
[21] |
LUKEY MJ, KATT WP, CERIONE RA. Targeting amino acid metabolism for cancer therapy[J]. Drug Discov Today, 2017, 22(5): 796-804. DOI: 10.1016/j.drudis.2016.12.003.
|
[22] |
LEE DY, KIM EH. Therapeutic effects of amino acids in liver diseases: Current studies and future perspectives[J]. J Cancer Prev, 2019, 24(2): 72-78. DOI: 10.15430/JCP.2019.24.2.72.
|
[23] |
DEJONG CH, van de POLL MC, SOETERS PB, et al. Aromatic amino acid metabolism during liver failure[J]. J Nutr, 2007, 137(6 Suppl 1): 1579S-1585S; discussion 1597S-1598S. DOI: 10.1093/jn/137.6.1579S.
|
[24] |
ZHAO Y, ZHANG J, WANG S, et al. Identification and validation of a nine-gene amino acid metabolism-related risk signature in HCC[J]. Front Cell Dev Biol, 2021, 9: 731790. DOI: 10.3389/fcell.2021.731790.
|
[25] |
WU J, WANG Y, JIANG R, et al. Ferroptosis in liver disease: New insights into disease mechanisms[J]. Cell Death Discov, 7(1): 276. DOI: 10.1038/s41420-021-00660-4.
|
[26] |
LIANG JY, WANG DS, LIN HC, et al. A novel ferroptosis-related gene signature for overall survival prediction in patients with hepatocellular[J]. Int J Biol Sci, 2020, 16(13): 2430-2441. DOI: 10.7150/ijbs.45050.
|
[27] |
WAN S, LEI Y, LI M, et al. A prognostic model for hepatocellular carcinoma patients based on signature ferroptosis-related genes[J]. Hepatol Int, 2021. DOI: 10.1007/s12072-021-10248-w.[Epub ahead of print]
|
[28] |
CHEN ZA, TIAN H, YAO DM, et al. Identification of a ferroptosis-related signature model including mRNAs and lncRNAs for predicting prognosis and immune activity in hepatocellular carcinoma[J]. Front Oncol, 2021, 11: 738477. DOI: 10.3389/fonc.2021.738477.
|
[29] |
LIANG J, ZHI Y, DENG W, et al. Development and validation of ferroptosis-related lncRNAs signature for hepatocellular carcinoma[J]. Peer J, 2021, 9: e11627. DOI: 10.7717/peerj.11627.
|
[30] |
XU Z, PENG B, LIANG Q, et al. Construction of a Ferroptosis-Related Nine-lncRNA Signature for predicting prognosis and immune response in hepatocellular carcinoma[J]. Front Immunol, 2021, 12: 719175. DOI: 10.3389/fimmu.2021.719175.
|
[31] |
LEVY JMM, TOWERS CG, THORBURN A. Targeting autophagy in cancer[J]. Nat Rev Cancer, 2017, 17(9): 528-542. DOI: 10.1038/nrc.2017.53.
|
[32] |
AMARAVADI RK, KIMMELMAN AC, DEBNATH J. Targeting autophagy in cancer: Recent advances and future directions[J]. Cancer Discov, 2019, 9(9): 1167-1181. DOI: 10.1158/2159-8290.CD-19-0292.
|
[33] |
HUO X, QI J, HUANG K, et al. Identification of an autophagy-related gene signature that can improve prognosis of hepatocellular carcinoma patients[J]. BMC Cancer, 2020, 20(1): 771. DOI: 10.1186/s12885-020-07277-3.
|
[34] |
YANG W, NIU L, ZHAO X, et al. Development and validation of a survival model based on autophagy-associated genes for predicting prognosis of hepatocellular carcinoma[J]. Am J Transl Res, 2020, 12(10): 6705-6722.
|
[35] |
CAO J, WU L, LEI X, et al. A signature of 13 autophagy related gene pairs predicts prognosis in hepatocellular carcinoma[J]. Bioengineered, 2021, 12(1): 697-707. DOI: 10.1080/21655979.2021.1880084.
|
[36] |
WU H, LIU T, QI J, et al. Four autophagy-related lncRNAs predict the prognosis of HCC through coexpression and ceRNA mechanism[J]. Biomed Res Int, 2020, 2020: 3801748. DOI: 10.1155/2020/3801748.
|
[37] |
YANG S, ZHOU Y, ZHANG X, et al. The prognostic value of an autophagy-related lncRNA signature in hepatocellular carcinoma[J]. BMC Bioinformatics, 2021, 22(1): 217. DOI: 10.1186/s12859-021-04123-6.
|
[38] |
CHEN XY, ZHANG J, ZHU JS. The role of m6A RNA methylation in human cancer[J]. Mol Cancer, 2019, 18(1): 103. DOI: 10.1186/s12943-019-1033-z.
|
[39] |
ZHANG L, QIAO Y, HUANG J, et al. Expression pattern and prognostic value of key regulators for m6A RNA modification in hepatocellular carcinoma[J]. Front Med (Lausanne), 2020, 7: 556. DOI: 10.3389/fmed.2020.00556.
|
[40] |
XU Y, HE X, DENG J, et al. Comprehensive analysis of the immune infiltrates and PD-L1 of m6A RNA methylation regulators in hepatocellular carcinoma[J]. Front Cell Dev Biol, 2021, 9: 681745. DOI: 10.3389/fcell.2021.681745.
|