[1] |
FORNER A, REIG M, BRUIX J. Hepatocellular carcinoma[J]. Lancet, 2018, 391(10127): 1301-1314. DOI: 10.1016/S0140-6736(18)30010-2.
|
[2] |
FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144(8): 1941-1953. DOI: 10.1002/ijc.31937.
|
[3] |
CHEN W, ZHENG R, BAADE PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338.
|
[4] |
LIBBRECHT MW, NOBLE WS. Machine learning applications in genetics and genomics[J]. Nat Rev Genet, 2015, 16(6): 321-332. DOI: 10.1038/nrg3920.
|
[5] |
OBERMEYER Z, EMANUEL EJ. Predicting the future - big data, machine learning, and clinical medicine[J]. N Engl J Med, 2016, 375(13): 1216-1219. DOI: 10.1056/NEJMp1606181.
|
[6] |
CAO C, LIU F, TAN H, et al. Deep learning and its applications in biomedicine[J]. Genomics Proteomics Bioinformatics, 2018, 16(1): 17-32. DOI: 10.1016/j.gpb.2017.07.003.
|
[7] |
CAMACHO DM, COLLINS KM, POWERS RK, et al. Next-generation machine learning for biological networks[J]. Cell, 2018, 173(7): 1581-1592. DOI: 10.1016/j.cell.2018.05.015.
|
[8] |
DEO RC. Machine learning in medicine[J]. Circulation, 2015, 132(20): 1920-1930. DOI: 10.1161/CIRCULATIONAHA.115.001593.
|
[9] |
SINGAL AG, MUKHERJEE A, ELMUNZER BJ, et al. Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma[J]. Am J Gastroenterol, 2013, 108(11): 1723-1730. DOI: 10.1038/ajg.2013.332.
|
[10] |
EHTESHAMI BEJNORDI B, VETA M, JOHANNES van DIEST P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[J]. JAMA, 2017, 318(22): 2199-2210. DOI: 10.1001/jama.2017.14585.
|
[11] |
BAȘTANLAR Y, OZUYSAL M. Introduction to machine learning[J]. Methods Mol Biol, 2014, 1107: 105-128. DOI: 10.1007/978-1-62703-748-8_7.
|
[12] |
ESTEVA A, ROBICQUET A, RAMSUNDAR B, et al. A guide to deep learning in healthcare[J]. Nat Med, 2019, 25(1): 24-29. DOI: 10.1038/s41591-018-0316-z.
|
[13] |
TERENTIEV AA, MOLDOGAZIEVA NT. Alpha-fetoprotein: A renaissance[J]. Tumour Biol, 2013, 34(4): 2075-2091. DOI: 10.1007/s13277-013-0904-y.
|
[14] |
POON TC, CHAN AT, ZEE B, et al. Application of classification tree and neural network algorithms to the identification of serological liver marker profiles for the diagnosis of hepatocellular carcinoma[J]. Oncology, 2001, 61(4): 275-283. DOI: 10.1159/000055334.
|
[15] |
CAMAGGI CM, ZAVATTO E, GRAMANTIERI L, et al. Serum albumin-bound proteomic signature for early detection and staging of hepatocarcinoma: Sample variability and data classification[J]. Clin Chem Lab Med, 2010, 48(9): 1319-1326. DOI: 10.1515/CCLM.2010.248.
|
[16] |
PATTERSON AD, MAURHOFER O, BEYOGLU D, et al. Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling[J]. Cancer Res, 2011, 71(21): 6590-6600. DOI: 10.1158/0008-5472.CAN-11-0885.
|
[17] |
WANG N, CAO Y, SONG W, et al. Serum peptide pattern that differentially diagnoses hepatitis B virus-related hepatocellular carcinoma from liver cirrhosis[J]. J Gastroenterol Hepatol, 2014, 29(7): 1544-1550. DOI: 10.1111/jgh.12545.
|
[18] |
ESTEVEZ J, CHEN VL, PODLAHA O, et al. Differential serum cytokine profiles in patients with chronic hepatitis B, C, and hepatocellular carcinoma[J]. Sci Rep, 2017, 7(1): 11867. DOI: 10.1038/s41598-017-11975-7.
|
[19] |
OSHO A, RICH NE, SINGAL AG. Role of imaging in management of hepatocellular carcinoma: Surveillance, diagnosis, and treatment response[J]. Hepatoma Res, 2020, 6: 55. DOI: 10.20517/2394-5079.2020.42.
|
[20] |
MUNIR K, ELAHI H, AYUB A, et al. Cancer diagnosis using deep learning: A bibliographic review[J]. Cancers (Basel), 2019, 11(9): 1235. DOI: 10.3390/cancers11091235.
|
[21] |
SINGH SP, WANG L, GUPTA S, et al. 3D deep learning on medical images: A review[J]. Sensors (Basel), 2020, 20(18): 5097. DOI: 10.3390/s20185097.
|
[22] |
AZER SA. Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: A systematic review[J]. World J Gastrointest Oncol, 2019, 11(12): 1218-1230. DOI: 10.4251/wjgo.v11.i12.1218.
|
[23] |
PANG W, JIANG H, LI S. Sparse contribution feature selection and classifiers optimized by concave-convex variation for HCC image recognition[J]. Biomed Res Int, 2017, 2017: 9718386. DOI: 10.1155/2017/9718386.
|
[24] |
WANG CJ, HAMM CA, SAVIC LJ, et al. Deep learning for liver tumor diagnosis part II: Convolutional neural network interpretation using radiologic imaging features[J]. Eur Radiol, 2019, 29(7): 3348-3357. DOI: 10.1007/s00330-019-06214-8.
|
[25] |
HAMM CA, WANG CJ, SAVIC LJ, et al. Deep learning for liver tumor diagnosis part I: Development of a convolutional neural network classifier for multi-phasic MRI[J]. Eur Radiol, 2019, 29(7): 3338-3347. DOI: 10.1007/s00330-019-06205-9.
|
[26] |
SHI W, KUANG S, CAO S, et al. Deep learning assisted differentiation of hepatocellular carcinoma from focal liver lesions: Choice of four-phase and three-phase CT imaging protocol[J]. Abdom Radiol (NY), 2020, 45(9): 2688-2697. DOI: 10.1007/s00261-020-02485-8.
|
[27] |
CUCCHETTI A, PISCAGLIA F, GRIGIONI AD, et al. Preoperative prediction of hepatocellular carcinoma tumour grade and micro-vascular invasion by means of artificial neural network: A pilot study[J]. J Hepatol, 2010, 52(6): 880-888. DOI: 10.1016/j.jhep.2009.12.037.
|
[28] |
LI S, JIANG H, PANG W. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading[J]. Comput Biol Med, 2017, 84: 156-167. DOI: 10.1016/j.compbiomed.2017.03.017.
|
[29] |
LIAO H, LONG Y, HAN R, et al. Deep learning-based classification and mutation prediction from histopathological images of hepatocellular carcinoma[J]. Clin Transl Med, 2020, 10(2): e102. DOI: 10.1002/ctm2.102.
|
[30] |
LIANG Q, LIU H, WANG C, et al. Phenotypic characterization analysis of human hepatocarcinoma by urine metabolomics approach[J]. Sci Rep, 2016, 6: 19763. DOI: 10.1038/srep19763.
|
[31] |
WANG J, JAIN S, CHEN D, et al. Development and evaluation of novel statistical methods in urine biomarker-based hepatocellular carcinoma screening[J]. Sci Rep, 2018, 8(1): 3799. DOI: 10.1038/s41598-018-21922-9.
|
[32] |
IBRAHIM R, YOUSRI NA, ISMAIL MA, et al. Multi-level gene/MiRNA feature selection using deep belief nets and active learning[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2014, 2014: 3957-3960. DOI: 10.1109/EMBC.2014.6944490.
|
[33] |
GUI T, DONG X, LI R, et al. Identification of hepatocellular carcinoma-related genes with a machine learning and network analysis[J]. J Comput Biol, 2015, 22(1): 63-71. DOI: 10.1089/cmb.2014.0122.
|
[34] |
AUGELLO G, BALASUS D, FUSILLI C, et al. Association between MICA gene variants and the risk of hepatitis C virus-induced hepatocellular cancer in a sicilian population sample[J]. OMICS, 2018, 22(4): 274-282. DOI: 10.1089/omi.2017.0215.
|
[35] |
KIM JW, YE Q, FORGUES M, et al. Cancer-associated molecular signature in the tissue samples of patients with cirrhosis[J]. Hepatology, 2004, 39(2): 518-527. DOI: 10.1002/hep.20053.
|
[36] |
SHEN J, QI L, ZOU Z, et al. Identification of a novel gene signature for the prediction of recurrence in HCC patients by machine learning of genome-wide databases[J]. Sci Rep, 2020, 10(1): 4435. DOI: 10.1038/s41598-020-61298-3.
|
[37] |
HO WH, LEE KT, CHEN HY, et al. Disease-free survival after hepatic resection in hepatocellular carcinoma patients: A prediction approach using artificial neural network[J]. PLoS One, 2012, 7(1): e29179. DOI: 10.1371/journal.pone.0029179.
|
[38] |
SHI HY, LEE KT, LEE HH, et al. Comparison of artificial neural network and logistic regression models for predicting in-hospital mortality after primary liver cancer surgery[J]. PLoS One, 2012, 7(4): e35781. DOI: 10.1371/journal.pone.0035781.
|
[39] |
QIAO G, LI J, HUANG A, et al. Artificial neural networking model for the prediction of post-hepatectomy survival of patients with early hepatocellular carcinoma[J]. J Gastroenterol Hepatol, 2014, 29(12): 2014-2020. DOI: 10.1111/jgh.12672.
|
[40] |
HUANG Y, CHEN H, ZENG Y, et al. Development and validation of a machine learning prognostic model for hepatocellular carcinoma recurrence after surgical resection[J]. Front Oncol, 2020, 10: 593741. DOI: 10.3389/fonc.2020.593741.
|
[41] |
TSENG YJ, PING XO, LIANG JD, et al. Multiple-time-series clinical data processing for classification with merging algorithm and statistical measures[J]. IEEE J Biomed Health Inform, 2015, 19(3): 1036-1043. DOI: 10.1109/JBHI.2014.2357719.
|
[42] |
QIU J, PENG B, TANG Y, et al. CpG methylation signature predicts recurrence in early-stage hepatocellular carcinoma: Results from a multicenter study[J]. J Clin Oncol, 2017, 35(7): 734-742. DOI: 10.1200/JCO.2016.68.2153.
|
[43] |
XU RH, WEI W, KRAWCZYK M, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma[J]. Nat Mater, 2017, 16(11): 1155-1161. DOI: 10.1038/nmat4997.
|
[44] |
LIANG JD, PING XO, TSENG YJ, et al. Recurrence predictive models for patients with hepatocellular carcinoma after radiofrequency ablation using support vector machines with feature selection methods[J]. Comput Methods Programs Biomed, 2014, 117(3): 425-434. DOI: 10.1016/j.cmpb.2014.09.001.
|
[45] |
BREHAR R, MITREA DA, VANCEA F, et al. Comparison of deep-learning and conventional machine-learning methods for the automatic recognition of the hepatocellular carcinoma areas from ultrasound images[J]. Sensors (Basel), 2020, 20(11): 3085. DOI: 10.3390/s20113085.
|
[46] |
ABAJIAN A, MURALI N, SAVIC LJ, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning-an artificial intelligence concept[J]. J Vasc Interv Radiol, 2018, 29(6): 850-857. e1. DOI: 10.1016/j.jvir.2018.01.769.
|
[47] |
PENG J, KANG S, NING Z, et al. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging[J]. Eur Radiol, 2020, 30(1): 413-424. DOI: 10.1007/s00330-019-06318-1.
|
[48] |
CHAUDHARY K, POIRION OB, LU L, et al. Deep learning-based multi-omics integration robustly predicts survival in liver cancer[J]. Clin Cancer Res, 2018, 24(6): 1248-1259. DOI: 10.1158/1078-0432.CCR-17-0853.
|
[49] |
NAM JY, LEE JH, BAE J, et al. Novel model to predict HCC recurrence after liver transplantation obtained using deep learning: A multicenter study[J]. Cancers (Basel), 2020, 12(10): 2791. DOI: 10.3390/cancers12102791.
|
[50] |
SINGAL AG, MUKHERJEE A, ELMUNZER BJ, et al. Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma[J]. Am J Gastroenterol, 2013, 108(11): 1723-1730. DOI: 10.1038/ajg.2013.332.
|
[51] |
DIVYA R, RADHA P. An optimized HCC recurrence prediction using APO algorithm multiple time series clinical liver cancer dataset[J]. J Med Syst, 2019, 43(7): 193. DOI: 10.1007/s10916-019-1265-x.
|
[52] |
GIORDANO S, TAKEDA S, DONADON M, et al. Rapid automated diagnosis of primary hepatic tumour by mass spectrometry and artificial intelligence[J]. Liver Int, 2020, 40(12): 3117-3124. DOI: 10.1111/liv.14604.
|