中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 1
Jan.  2022
Turn off MathJax
Article Contents

Association between intrahepatic bile duct alterations and liver fibrosis

DOI: 10.3969/j.issn.1001-5256.2022.01.032
Research funding:

Youth Science Fund Project by National Natural Science Foundation of China (81800543)

  • Received Date: 2021-05-18
  • Accepted Date: 2021-06-11
  • Published Date: 2022-01-20
  • Liver cirrhosis is a liver disease caused by various factors and is characterized by diffuse fibrous hyperplasia, lobular structural damage, and pseudolobule formation. Bile duct proliferation has been observed in a variety of animal models of liver cirrhosis and patients with liver cirrhosis caused by different etiologies, and it is regulated by signaling pathways with the involvement of multiple regulatory factors such as neuropeptides, neurotransmitters, and hormones. Moreover, the proliferated bile ducts promote the formation of liver fibrosis by mediating the proliferation and activation of hepatic stellate cells. This article summarizes the changes of the intrahepatic bile duct system in liver cirrhosis and its influence on the process of liver fibrosis, various signaling pathways associated with cholangiocyte proliferation and liver fibrosis, and the value of the dynamic evolution of bile duct structure in predicting the degree of liver fibrosis. It is pointed out that bile duct proliferation may become a potential target for the intervention of liver fibrosis, which provides new ideas and methods for early treatment and reversal of liver fibrosis.

     

  • loading
  • [1]
    GBD 2017 Cirrhosis Collaborators. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2020, 5(3): 245-266. DOI: 10.1016/S2468-1253(19)30349-8.
    [2]
    LI H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma[J]. Expert Rev Gastroenterol Hepatol, 2021, 15(3): 217-233. DOI: 10.1080/17474124.2021.1842732.
    [3]
    NGUYEN T, TANG W, NAN L, et al. The role of bile duct reactive change in the pathogenesis of liver fibrosis due to hepatitis C[J]. Exp Mol Pathol, 2005, 79(2): 95-99. DOI: 10.1016/j.yexmp.2005.04.010.
    [4]
    RICHARDSON MM, JONSSON JR, POWELL EE, et al. Progressive fibrosis in nonalcoholic steatohepatitis: Association with altered regeneration and a ductular reaction[J]. Gastroenterology, 2007, 133(1): 80-90. DOI: 10.1053/j.gastro.2007.05.012.
    [5]
    RÓKUSZ A, VERES D, SZVCS A, et al. Ductular reaction correlates with fibrogenesis but does not contribute to liver regeneration in experimental fibrosis models[J]. PLoS One, 2017, 12(4): e0176518. DOI: 10.1371/journal.pone.0176518.
    [6]
    LV WJ, ZHAO XY, HU DD, et al. Insight into bile duct reaction to obstruction from a three-dimensional perspective using ex vivo phase-contrast CT[J]. Radiology, 2021, 299(3): 597-610. DOI: 10.1148/radiol.2021203967.
    [7]
    SVEGLIATI-BARONI G, FARACI G, FABRIS L, et al. Insulin resistance and necroinflammation drives ductular reaction and epithelial-mesenchymal transition in chronic hepatitis C[J]. Gut, 2011, 60(1): 108-115. DOI: 10.1136/gut.2010.219741.
    [8]
    WOOD MJ, GADD VL, POWELL LW, et al. Ductular reaction in hereditary hemochromatosis: The link between hepatocyte senescence and fibrosis progression[J]. Hepatology, 2014, 59(3): 848-857. DOI: 10.1002/hep.26706.
    [9]
    QIN L, ZHAO X, JIAN J, et al. High-resolution 3D visualization of ductular proliferation of bile duct ligation-induced liver fibrosis in rats using X-ray phase contrast computed tomography[J]. Sci Rep, 2017, 7(1): 4215. DOI: 10.1038/s41598-017-03993-2.
    [10]
    MILANI S, HERBST H, SCHUPPAN D, et al. Procollagen expression by nonparenchymal rat liver cells in experimental biliary fibrosis[J]. Gastroenterology, 1990, 98(1): 175-184. DOI: 10.1016/0016-5085(90)91307-r.
    [11]
    CLOUSTON AD, POWELL EE, WALSH MJ, et al. Fibrosis correlates with a ductular reaction in hepatitis C: Roles of impaired replication, progenitor cells and steatosis[J]. Hepatology, 2005, 41(4): 809-818. DOI: 10.1002/hep.20650.
    [12]
    GOUW AS, CLOUSTON AD, THEISE ND. Ductular reactions in human liver: Diversity at the interface[J]. Hepatology, 2011, 54(5): 1853-1863. DOI: 10.1002/hep.24613.
    [13]
    HUBEL E, SAROHA A, PARK WJ, et al. Sortilin deficiency reduces ductular reaction, hepatocyte apoptosis, and liver fibrosis in cholestatic-induced liver injury[J]. Am J Pathol, 2017, 187(1): 122-133. DOI: 10.1016/j.ajpath.2016.09.005.
    [14]
    HALL C, SATO K, WU N, et al. Regulators of cholangiocyte proliferation[J]. Gene Expr, 2017, 17(2): 155-171. DOI: 10.3727/105221616X692568.
    [15]
    FABRIS L, BRIVIO S, CADAMURO M, et al. Revisiting epithelial-to-mesenchymal transition in liver fibrosis: Clues for a better understanding of the "reactive" biliary epithelial phenotype[J]. Stem Cells Int, 2016, 2016: 2953727. DOI: 10.1155/2016/2953727.
    [16]
    MASYUK TV, RITMAN EL, LARUSSO NF. Hepatic artery and portal vein remodeling in rat liver: Vascular response to selective cholangiocyte proliferation[J]. Am J Pathol, 2003, 162(4): 1175-1182. DOI: 10.1016/S0002-9440(10)63913-2.
    [17]
    MCMILLIN M, DEMORROW S, GLASER S, et al. Melatonin inhibits hypothalamic gonadotropin-releasing hormone release and reduces biliary hyperplasia and fibrosis in cholestatic rats[J]. Am J Physiol Gastrointest Liver Physiol, 2017, 313(5): G410-G418. DOI: 10.1152/ajpgi.00421.2016.
    [18]
    SATO K, MENG F, GIANG T, et al. Mechanisms of cholangiocyte responses to injury[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B): 1262-1269. DOI: 10.1016/j.bbadis.2017.06.017.
    [19]
    GLASER SS, GAUDIO E, MILLER T, et al. Cholangiocyte proliferation and liver fibrosis[J]. Expert Rev Mol Med, 2009, 11: e7. DOI: 10.1017/S1462399409000994.
    [20]
    POLAK JM, COULLING I, BLOOM S, et al. Immunofluorescent localization of secretin and enteroglucagon in human intestinal mucosa[J]. Scand J Gastroenterol, 1971, 6(8): 739-744. DOI: 10.3109/00365527109179946.
    [21]
    ALPINI G, ROBERTS S, KUNTZ SM, et al. Morphological, molecular, and functional heterogeneity of cholangiocytes from normal rat liver[J]. Gastroenterology, 1996, 110(5): 1636-1643. DOI: 10.1053/gast.1996.v110.pm8613073.
    [22]
    GLASER S, LAM IP, FRANCHITTO A, et al. Knockout of secretin receptor reduces large cholangiocyte hyperplasia in mice with extrahepatic cholestasis induced by bile duct ligation[J]. Hepatology, 2010, 52(1): 204-214. DOI: 10.1002/hep.23657.
    [23]
    GLASER S, MENG F, HAN Y, et al. Secretin stimulates biliary cell proliferation by regulating expression of microRNA 125b and microRNA let7a in mice[J]. Gastroenterology, 2014, 146(7): 1795-1808. e12. DOI: 10.1053/j.gastro.2014.02.030.
    [24]
    WU N, MENG F, INVERNIZZI P, et al. The secretin/secretin receptor axis modulates liver fibrosis through changes in transforming growth factor-β1 biliary secretion in mice[J]. Hepatology, 2016, 64(3): 865-879. DOI: 10.1002/hep.28622.
    [25]
    GUERRIER M, ATTILI F, ALPINI G, et al. Prolonged administration of secretin to normal rats increases biliary proliferation and secretin-induced ductal secretory activity[J]. Hepatobiliary Surg Nutr, 2014, 3(3): 118-125. DOI: 10.3978/j.issn.2304-3881.2014.04.04.
    [26]
    KENNEDY L, FRANCIS H, INVERNIZZI P, et al. Secretin/secretin receptor signaling mediates biliary damage and liver fibrosis in early-stage primary biliary cholangitis[J]. FASEB J, 2019, 33(9): 10269-10279. DOI: 10.1096/fj.201802606R.
    [27]
    NISHIO T, HU R, KOYAMA Y, et al. Activated hepatic stellate cells and portal fibroblasts contribute to cholestatic liver fibrosis in MDR2 knockout mice[J]. J Hepatol, 2019, 71(3): 573-585. DOI: 10.1016/j.jhep.2019.04.012.
    [28]
    SPITSIN S, PAPPA V, DOUGLAS SD. Truncation of neurokinin-1 receptor-Negative regulation of substance P signaling[J]. J Leukoc Biol, 2018, 103(6): 1043-1051. DOI: 10.1002/JLB.3MIR0817-348R.
    [29]
    CECI L, FRANCIS H, ZHOU T, et al. Knockout of the tachykinin receptor 1 in the Mdr2-/- (Abcb4-/-) mouse model of primary sclerosing cholangitis reduces biliary damage and liver fibrosis[J]. Am J Pathol, 2020, 190(11): 2251-2266. DOI: 10.1016/j.ajpath.2020.07.007.
    [30]
    GLASER S, GAUDIO E, RENZI A, et al. Knockout of the neurokinin-1 receptor reduces cholangiocyte proliferation in bile duct-ligated mice[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 301(2): G297-G305. DOI: 10.1152/ajpgi.00418.2010.
    [31]
    WAN Y, MENG F, WU N, et al. Substance P increases liver fibrosis by differential changes in senescence of cholangiocytes and hepatic stellate cells[J]. Hepatology, 2017, 66(2): 528-541. DOI: 10.1002/hep.29138.
    [32]
    TATEMOTO K, HOSOYA M, HABATA Y, et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor[J]. Biochem Biophys Res Commun, 1998, 251(2): 471-476. DOI: 10.1006/bbrc.1998.9489.
    [33]
    HOSOYA M, KAWAMATA Y, FUKUSUMI S, et al. Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin[J]. J Biol Chem, 2000, 275(28): 21061-21067. DOI: 10.1074/jbc.M908417199.
    [34]
    MELGAR-LESMES P, PERRAMON M, JIMÉNEZ W. Roles of the hepatic endocannabinoid and apelin systems in the pathogenesis of liver fibrosis[J]. Cells, 2019, 8(11): 1311. DOI: 10.3390/cells8111311.
    [35]
    PRINCIPE A, MELGAR-LESMES P, FERNÁNDEZ-VARO G, et al. The hepatic apelin system: A new therapeutic target for liver disease[J]. Hepatology, 2008, 48(4): 1193-1201. DOI: 10.1002/hep.22467.
    [36]
    REICHENBACH V, ROS J, FERNÁNDEZ-VARO G, et al. Prevention of fibrosis progression in CCl4-treated rats: Role of the hepatic endocannabinoid and apelin systems[J]. J Pharmacol Exp Ther, 2012, 340(3): 629-637. DOI: 10.1124/jpet.111.188078.
    [37]
    CHEN L, ZHOU T, WHITE T, et al. The apelin-apelin receptor axis triggers cholangiocyte proliferation and liver fibrosis during mouse models of cholestasis[J]. Hepatology, 2021, 73(6): 2411-2428. DOI: 10.1002/hep.31545.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (738) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return