[1] |
The State Council. Outline of "Healthy China 2030" plan[EB/OL]. (2016-10-25) http://www.gov.cn/xinwen/2016-10/25/content_5124174.htm.
国务院. "健康中国2030 "规划纲要[EB/OL]. (2016-10-25)http://www.gov.cn/xinwen/2016-10/25/content_5124174.htm.
|
[2] |
The State Council. The 13th Five-Year Plan for National Drug Safety[EB/OL]. (2017-02-21) http://www.gov.cn/xinwen/2017-02/21/content_5169808.htm.
国务院. "十三五"国家药品安全规划[EB/OL]. (2017-02-21) http://www.gov.cn/xinwen/2017-02/21/content_5169808.htm.
|
[3] |
Drug-Induced Liver Disease Study Group, Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the management of drug-induced liver injury[J]. J Clin Hepatol, 2015, 31(11): 1752-1769. DOI: 10.3969/j.Issn.1001-5256.2015.11.002.
中华医学会肝病学分会药物性肝病学组. 药物性肝损伤诊治指南[J]. 临床肝胆病杂志, 2015, 31(11): 1752-1769. DOI: 10.3969/j.issn.1001-5256.2015.11.002.
|
[4] |
GE FL, NIU M, HAN ZX, et al. Landscape of hepatobiliary adverse drug reactions related to preparations containing psoraleae fructus and its application in pharmacovigilance[J]. Chin J Integr Med, 2021, 27(11): 832-837. DOI: 10.1007/s11655-021-3442-2.[Online ahead of print]
|
[5] |
GE FL, GUO YM, CAO JL, et al. Research progress on evaluation methods and risk factors for Chinese medicines-induced liver injury[J]. Mod Chin Med, 2019, 21(3): 284-290. DOI: 10.13313/j.issn.1673-4890.20180925002.
葛斐林, 郭玉明, 曹俊岭, 等. 中药药源性肝损伤评价方法及风险因素研究进展[J]. 中国现代中药, 2019, 21(3): 284-290. DOI: 10.13313/j.issn.1673-4890.20180925002.
|
[6] |
DU XX, SONG HB, REN JT, et al. Opportunities and challenges of post-marketing evaluation of raditional Chinese medicine[J]. Chin J Chin Mater Med, 2014, 39(18): 3427-3429. DOI: 10.4268/cjcmm20141803.
杜晓曦, 宋海波, 任经天, 等. 中药上市后评价的机遇与挑战[J]. 中国中药杂志, 2014, 39(18): 3427-3429. DOI: 10.4268/cjcmm20141803.
|
[7] |
MAO YM. Strengthening the scientific research and supervision of drug-induced liver injury based on big data[J]. J Clin Hepatol, 2018, 34(6): 1166 -1168. DOI: 10.3969/j.issn.1001-5256.2018.06.005.
茅益民. 加强基于大数据的药物性肝损伤的科学研究和监管[J]. 临床肝胆病杂志, 2018, 34(6): 1166-1168. DOI: 10.3969/j.issn.1001-5256.2018.06.005.
|
[8] |
State Drug Administration. Technical guidelines for clinical evaluation of liver injury induced by traditional Chinese medicine[J]. J Clin Hepatol, 2018, 34(7): 1403-1409. DOI: 10.3969/j.issn.1001-5256.2018.07.008.
国家药品监督管理局. 中药药源性肝损伤临床评价技术指导原则[J]. 临床肝胆病杂志, 2018, 34(7): 1403-1409. DOI: 10.3969/j.issn.1001-5256.2018.07.008.
|
[9] |
World Health Organization (WHO), Uppsala Monitoring Centre. The use of the WHO-UMC system for standardised case causality assessment[EB/OL]. http://www.who-umc.org/Graphics/26649.pdf 2018.
|
[10] |
PAN XC. Drug risk assessment based on cluster analysis[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.
潘轩超. 基于聚类分析的药物风险评估[D]. 南京: 南京邮电大学, 2020.
|
[11] |
ZHU Q, DING J, REN WX, et al. Study on risk assessment model of in vitro diagnostic reagent adverse events based on BP neural network[J]. Chin J Med Instrument, 2019, 43(2): 136-139. DOI: 10.3969/j.issn.1671-7104.2019.02.017.
朱清, 丁静, 任文霞, 等. 基于BP神经网络的体外诊断试剂不良事件风险评估模型研究[J]. 中国医疗器械杂志, 2019, 43(2): 136-139. DOI: 10.3969/j.issn.1671-7104.2019.02.017.
|
[12] |
HARPAZ R, DUMOCHEL W, SHAH NH. Big data and adverse drug reaction detection[J]. Clin Pharmacol Ther, 2016, 99(3): 268-270. DOI: 10.1002/cpt.302.
|
[13] |
MA HL, XU CY, YANG XM. Application status of decision tree in traditional Chinese medicine[J]. World Chin Med, 2021, 16(17): 2648-2651, 2656. DOI: 10.3969/j.issn.1673-7202.2021.17.025.
马红丽, 徐长英, 杨新鸣. 决策树模型在中医药领域的应用现状[J]. 世界中医药, 2021, 16(17): 2648-2651, 2656. DOI: 10.3969/j.issn.1673-7202.2021.17.025.
|
[14] |
GE FL, NIU M, HAN ZX, et al. Analysis of epidemiological characteristics of drug induced liver injury associated with baixianpi preparations[J]. Chin J Chin Mater Med, 2019, 44(5): 1048-1052. DOI: 10.19540/j.cnki.cjcmm.20181217.001.
葛斐林, 牛明, 韩紫欣, 等. 白鲜皮制剂相关肝损伤的药物流行病学特征分析[J]. 中国中药杂志, 2019, 44(5): 1048-1052. DOI: 10.19540/j.cnki.cjcmm.20181217.001.
|