[1] |
KOPETZ S, LEMOS R, POWIS G. The promise of patient-derived xenografts: The best laid plans of mice and men[J]. Clin Cancer Res, 2012, 18(19): 5160-5162. DOI: 10.1158/1078-0432.CCR-12-2408.
|
[2] |
BRUNA A, RUEDA OM, GREENWOOD W, et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds[J]. Cell, 2016, 167(1): 260-274. e22. DOI: 10.1016/j.cell.2016.08.041.
|
[3] |
CHOI SY, LIN D, GOUT PW, et al. Lessons from patient-derived xenografts for better in vitro modeling of human cancer[J]. Adv Drug Deliv Rev, 2014, 79-80: 222-237. DOI: 10.1016/j.addr.2014.09.009.
|
[4] |
HAN Y, DUAN X, YANG L, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids[J]. Nature, 2021, 589(7841): 270-275. DOI: 10.1038/s41586-020-2901-9.
|
[5] |
van de WETERING M, FRANCIES HE, FRANCIS JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4): 933-945. DOI: 10.1016/j.cell.2015.03.053.
|
[6] |
van TIENDEREN GS, GROOT KOERKAMP B, IJZERMANS J, et al. Recreating tumour complexity in a dish: Organoid models to study liver cancer cells and their extracellular environment[J]. Cancers (Basel), 2019, 11(11): 1706. DOI: 10.3390/cancers11111706.
|
[7] |
BRESNAHAN E, RAMADORI P, HEIKENWALDER M, et al. Novel patient-derived preclinical models of liver cancer[J]. J Hepatol, 2020, 72(2): 239-249. DOI: 10.1016/j.jhep.2019.09.028.
|
[8] |
KISSEL M, BERNDT S, FIEBIG L, et al. Antitumor effects of regorafenib and sorafenib in preclinical models of hepatocellular carcinoma[J]. Oncotarget, 2017, 8(63): 107096-107108. DOI: 10.18632/oncotarget.22334.
|
[9] |
LV H, WANG C, FANG T, et al. Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2[J]. NPJ Precis Oncol, 2018, 2(1): 1. DOI: 10.1038/s41698-017-0044-8.
|
[10] |
MATSUKI M, HOSHI T, YAMAMOTO Y, et al. Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models[J]. Cancer Med, 2018, 7(6): 2641-2653. DOI: 10.1002/cam4.1517.
|
[11] |
KEATING GM, SANTORO A. Sorafenib: A review of its use in advanced hepatocellular carcinoma[J]. Drugs, 2009, 69(2): 223-240. DOI: 10.2165/00003495-200969020-00006.
|
[12] |
CHEN KF, CHEN HL, TAI WT, et al. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells[J]. J Pharmacol Exp Ther, 2011, 337(1): 155-161. DOI: 10.1124/jpet.110.175786.
|
[13] |
WU CX, WANG XQ, CHOK SH, et al. Blocking CDK1/PDK1/β-Catenin signaling by CDK1 inhibitor RO3306 increased the efficacy of sorafenib treatment by targeting cancer stem cells in a preclinical model of hepatocellular carcinoma[J]. Theranostics, 2018, 8(14): 3737-3750. DOI: 10.7150/thno.25487.
|
[14] |
WANG F, BANK T, MALNASSY G, et al. Inhibition of insulin-like growth factor 1 receptor enhances the efficacy of sorafenib in inhibiting hepatocellular carcinoma cell growth and survival[J]. Hepatol Commun, 2018, 2(6): 732-746. DOI: 10.1002/hep4.1181.
|
[15] |
LIANG Y, CHEN J, YU Q, et al. Phosphorylated ERK is a potential prognostic biomarker for Sorafenib response in hepatocellular carcinoma[J]. Cancer Med, 2017, 6(12): 2787-2795. DOI: 10.1002/cam4.1228.
|
[16] |
HU B, LI H, GUO W, et al. Establishment of a hepatocellular carcinoma patient-derived xenograft platform and its application in biomarker identification[J]. Int J Cancer, 2020, 146(6): 1606-1617. DOI: 10.1002/ijc.32564.
|
[17] |
JUNG J, SEOL HS, CHANG S. The Generation and application of patient-derived xenograft model for cancer research[J]. Cancer Res Treat, 2018, 50(1): 1-10. DOI: 10.4143/crt.2017.307.
|
[18] |
SMITH DJ, LIN LJ, MOON H, et al. Propagating humanized BLT mice for the study of human immunology and immunotherapy[J]. Stem Cells Dev, 2016, 25(24): 1863-1873. DOI: 10.1089/scd.2016.0193.
|
[19] |
WANG H, ZHOU L, XIE K, et al. Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma[J]. Theranostics, 2018, 8(14): 3949-3963. DOI: 10.7150/thno.26161.
|
[20] |
GU Q, ZHANG B, SUN H, et al. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development[J]. Oncotarget, 2015, 6(24): 20160-20176. DOI: 10.18632/oncotarget.3969.
|
[21] |
XIN H, WANG K, HU G, et al. Establishment and characterization of 7 novel hepatocellular carcinoma cell lines from patient-derived tumor xenografts[J]. PLoS One, 2014, 9(1): e85308. DOI: 10.1371/journal.pone.0085308.
|
[22] |
KAPAŁCZYŹ SKA M, KOLENDA T, PRZYBYŁAW, et al. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures[J]. Arch Med Sci, 2018, 14(4): 910-919. DOI: 10.5114/aoms.2016.63743.
|
[23] |
DUVAL K, GROVER H, HAN LH, et al. Modeling physiological events in 2D vs. 3D cell culture[J]. Physiology (Bethesda), 2017, 32(4): 266-277. DOI: 10.1152/physiol.00036.2016.
|
[24] |
IMAMURA Y, MUKOHARA T, SHIMONO Y, et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer[J]. Oncol Rep, 2015, 33(4): 1837-1843. DOI: 10.3892/or.2015.3767.
|
[25] |
LANCASTER MA, KNOBLICH JA. Organogenesis in a dish: Modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194): 1247125. DOI: 10.1126/science.1247125.
|
[26] |
SATO T, VRIES RG, SNIPPERT HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. DOI: 10.1038/nature07935.
|
[27] |
KARTHAUS WR, IAQUINTA PJ, DROST J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures[J]. Cell, 2014, 159(1): 163-175. DOI: 10.1016/j.cell.2014.08.017.
|
[28] |
GAO D, VELA I, SBONER A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159(1): 176-187. DOI: 10.1016/j.cell.2014.08.016.
|
[29] |
LOSIC B, CRAIG AJ, VILLACORTA-MARTIN C, et al. Intratumoral heterogeneity and clonal evolution in liver cancer[J]. Nat Commun, 2020, 11(1): 291. DOI: 10.1038/s41467-019-14050-z.
|
[30] |
LI L, WANG H. Heterogeneity of liver cancer and personalized therapy[J]. Cancer Lett, 2016, 379(2): 191-197. DOI: 10.1016/j.canlet.2015.07.018.
|
[31] |
BROUTIER L, MASTROGIOVANNI G, VERSTEGEN MM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nat Med, 2017, 23(12): 1424-1435. DOI: 10.1038/nm.4438.
|
[32] |
NUCIFORO S, FOFANA I, MATTER MS, et al. Organoid models of human liver cancers derived from tumor needle biopsies[J]. Cell Rep, 2018, 24(5): 1363-1376. DOI: 10.1016/j.celrep.2018.07.001.
|
[33] |
SABOROWSKI A, WOLFF K, SPIELBERG S, et al. Murine liver organoids as a genetically flexible system to study liver cancer in vivo and in vitro[J]. Hepatol Commun, 2019, 3(3): 423-436. DOI: 10.1002/hep4.1312.
|
[34] |
TAKAI A, FAKO V, DANG H, et al. Three-dimensional organotypic culture models of human hepatocellular carcinoma[J]. Sci Rep, 2016, 6: 21174. DOI: 10.1038/srep21174.
|
[35] |
CAO W, LIU J, WANG L, et al. Modeling liver cancer and therapy responsiveness using organoids derived from primary mouse liver tumors[J]. Carcinogenesis, 2019, 40(1): 145-154. DOI: 10.1093/carcin/bgy129.
|
[36] |
LI L, KNUTSDOTTIR H, HUI K, et al. Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity[J]. JCI Insight, 2019, 4(2): e121490. DOI: 10.1172/jci.insight.121490.
|
[37] |
LI L, HALPERT G, LERNER MG, et al. Protein synthesis inhibitor omacetaxine is effective against hepatocellular carcinoma[J]. JCI Insight, 2021, 6(12): e138197. DOI: 10.1172/jci.insight.138197.
|
[38] |
ZUCMAN-ROSSI J, VILLANUEVA A, NAULT JC, et al. Genetic landscape and biomarkers of hepatocellular carcinoma[J]. Gastroenterology, 2015, 149(5): 1226-1239. e4. DOI: 10.1053/j.gastro.2015.05.061.
|
[39] |
COPUR MS. Sorafenib in advanced hepatocellular carcinoma[J]. N Engl J Med, 2008, 359(23): 2498; author reply 2498-2499. DOI: 10.1056/NEJMoa0708857
|
[40] |
ABOU-ALFA GK, JOHNSON P, KNOX JJ, et al. Doxorubicin plus sorafenib vs doxorubicin alone in patients with advanced hepatocellular carcinoma: A randomized trial[J]. JAMA, 2010, 304(19): 2154-2160. DOI: 10.1001/jama.2010.1672.
|
[41] |
QIN S, BAI Y, LIM HY, et al. Randomized, multicenter, open-label study of oxaliplatin plus fluorouracil/leucovorin versus doxorubicin as palliative chemotherapy in patients with advanced hepatocellular carcinoma from Asia[J]. J Clin Oncol, 2013, 31(28): 3501-3508. DOI: 10.1200/JCO.2012.44.5643.
|
[42] |
SCHULZE K, IMBEAUD S, LETOUZÉ E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets[J]. Nat Genet, 2015, 47(5): 505-511. DOI: 10.1038/ng.3252.
|
[43] |
WAGHRAY A, MURALI AR, MENON KN. Hepatocellular carcinoma: From diagnosis to treatment[J]. World J Hepatol, 2015, 7(8): 1020-1029. DOI: 10.4254/wjh.v7.i8.1020.
|
[44] |
VILGRAIN V, PEREIRA H, ASSENAT E, et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): An open-label randomised controlled phase 3 trial[J]. Lancet Oncol, 2017, 18(12): 1624-1636. DOI: 10.1016/S1470-2045(17)30683-6.
|
[45] |
ARAO T, UESHIMA K, MATSUMOTO K, et al. FGF3/FGF4 amplification and multiple lung metastases in responders to sorafenib in hepatocellular carcinoma[J]. Hepatology, 2013, 57(4): 1407-1415. DOI: 10.1002/hep.25956.
|
[46] |
TEYATEETI A, MAHVASH A, LONG JP, et al. Survival outcomes for yttrium-90 transarterial radioembolization with and without sorafenib for unresectable hepatocellular carcinoma patients[J]. J Hepatocell Carcinoma, 2020, 7: 117-131. DOI: 10.2147/JHC.S248314.
|
[47] |
TANNIR NM, MOTZER RJ, AGARWAL N, et al. CANTATA: A randomized phase 2 study of CB-839 in combination with cabozantinib vs. placebo with cabozantinib in patients with advanced/metastatic renal cell carcinoma[J]. J Clin Oncol, 2018, 36(15): TPS4601. http://www.researchgate.net/publication/327452792_CANTATA_A_randomized_phase_2_study_of_CB-839_in_combination_with_cabozantinib_vs_placebo_with_cabozantinib_in_patients_with_advancedmetastatic_renal_cell_carcinoma
|
[48] |
YAO Z, LI J, GUAN Z, et al. Liver disease screening based on densely connected deep neural networks[J]. Neural Netw, 2020, 123: 299-304. DOI: 10.1016/j.neunet.2019.11.005.
|
[49] |
TAO K, BIAN Z, ZHANG Q, et al. Machine learning-based genome-wide interrogation of somatic copy number aberrations in circulating tumor DNA for early detection of hepatocellular carcinoma[J]. EBioMedicine, 2020, 56: 102811. DOI: 10.1016/j.ebiom.2020.102811.
|
[50] |
SINGAL AG, MUKHERJEE A, ELMUNZER BJ, et al. Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma[J]. Am J Gastroenterol, 2013, 108(11): 1723-1730. DOI: 10.1038/ajg.2013.332.
|
[51] |
JONAS S, BECHSTEIN WO, STEINMVLLER T, et al. Vascular invasion and histopathologic grading determine outcome after liver transplantation for hepatocellular carcinoma in cirrhosis[J]. Hepatology, 2001, 33(5): 1080-1086. DOI: 10.1053/jhep.2001.23561.
|
[52] |
CUCCHETTI A, PISCAGLIA F, GRIGIONI AD, et al. Preoperative prediction of hepatocellular carcinoma tumour grade and micro-vascular invasion by means of artificial neural network: a pilot study[J]. J Hepatol, 2010, 52(6): 880-888. DOI: 10.1016/j.jhep.2009.12.037.
|
[53] |
XU X, ZHANG HL, LIU QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J]. J Hepatol, 2019, 70(6): 1133-1144. DOI: 10.1016/j.jhep.2019.02.023.
|
[54] |
DONG Y, ZHOU L, XIA W, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma: Initial application of a radiomic algorithm based on grayscale ultrasound images[J]. Front Oncol, 2020, 10: 353. DOI: 10.3389/fonc.2020.00353.
|
[55] |
ZHOU W, ZHANG L, WANG K, et al. Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images[J]. J Magn Reson Imaging, 2017, 45(5): 1476-1484. DOI: 10.1002/jmri.25454.
|