中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 6
Jun.  2022
Turn off MathJax
Article Contents

Clinical significance of the determination of fecal short-chain fatty acids in patients with nonalcoholic fatty liver disease

DOI: 10.3969/j.issn.1001-5256.2022.06.016
Research funding:

Qinghai Digestive System Disease Clinical Medical Research Center (2019-SF-L3)

More Information
  • Corresponding author: WANG Xuehong, Lindawang0710@hotmail.com (ORCID:0000-0003-0175-1837); MA Zhenqi, 876295786@qq.com (ORCID:0000-0003-4979-5687)
  • Received Date: 2021-10-08
  • Accepted Date: 2021-11-10
  • Published Date: 2022-06-20
  •   Objective  To investigate the association of the metabolism of intestinal short-chain fatty acids (SCFAs) with the development and progression of the disease spectrum of nonalcoholic fatty liver disease (NAFLD) by determining the content of fecal SCFAs in patients with different NAFLD diseases and the change in the content of fecal SCFAs after treatment in patients at a high risk of nonalcoholic steatohepatitis (NASH).  Methods  A total of 90 patients who were diagnosed with NAFLD in The Affiliated Hospital of Qinghai University from July 2020 to July 2021 were enrolled and divided into simple nonalcoholic fatty liver (NAFL) group with 30 patients, NASH group with 30 patients, and nonalcoholic fatty liver fibrosis group with 30 patients, and 40 individuals who underwent physical examination during the same period of time were enrolled as control group. Related case data and fecal SCFAs content were collected for the four groups, and related clinical indices and fecal SCFAs content were collected for 10 patients at a high risk of NASH after 3 months of intervention. The analysis of variance was used for comparison of normally distributed continuous data between multiple groups, and the paired samples t-test was used for comparison within each group; the Kruskal-Wallis H test was used for comparison of non-normally distributed continuous data between multiple groups, and the paired samples Wilcoxon signed rank sum test was used for comparison within each group; a Spearman correlation analysis was used to investigate the correlation between variables; the receiver operating characteristic (ROC) curve analysis was used for diagnostic evaluation.  Results  Compared with the control group, the nonalcoholic fatty liver fibrosis group had significantly higher contents of valeric acid and caproic acid, and the NAFL group had significantly lower contents of valeric acid and caproic acid (all P < 0.05); the nonalcoholic fatty liver fibrosis group had significantly higher contents of valeric acid and caproic acid than the NAFL group (P < 0.05); the nonalcoholic fatty liver fibrosis group had a significantly higher content of valeric acid than the NASH group (P < 0.05); the NASH group had a significantly higher content of caproic acid than the NAFL group (P < 0.05). After treatment, the high-risk patients in the NASH group had significant reductions in HbA1c, fasting plasma glucose (FPG), triglyceride (TG), total cholesterol (TC), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), total bile acid (TBA), prothrombin time (PT), uric acid (UA), controlled attenuation parameter (CAP), and liver stiffness measurement (LSM) (Z=-2.805, -2.703, -2.193, -2.599, -2.805, -2.701, -2.803, -1.988, -2.807, -2.803, -2.803, and -2.668, all P < 0.05); for these patients, the contents of acetic acid and propionic acid after treatment were significantly higher than those before treatment (Z=-2.803 and -2.803, both P < 0.05), and the content of isobutyric acid after treatment was significantly lower than that before treatment (Z=-2.803, P < 0.05). In the diagnosis of nonalcoholic fatty liver fibrosis, valeric acid had an area under the ROC curve (AUC) of 0.842, with a sensitivity of 86.7% and a specificity of 70% at the optimal cut-off value of 141.42 μg/g; caproic acid had an AUC of 0.819, with a sensitivity of 70% and a specificity of 85% at the optimal cut-off value of 6.93 μg/g.  Conclusion  Valeric acid and caproic acid may promote the development of NAFLD disease spectrum. Acetic acid and propionic acid may have a certain protective effect on the liver of NAFLD patients, and isobutyric acid may promote the development and progression of NASH. The protective effect of acetic acid and propionic acid on the liver may further lead to the reductions in HbA1c, FPG, TG, TC, ALT, AST, GGT, TBA, PT, UA, CAP, and LSM. Valeric acid and caproic acid have an inferior diagnostic value to PIIIP N-P and a superior diagnostic value to type IV collagen and hyaluronic acid. Valeric acid with the optimal cut-off value of 141.42 μg/g and caproic acid with the optimal cut-off value of 6.93 μg/g can be used as the auxiliary diagnostic indicators for the early diagnosis of nonalcoholic fatty liver fibrosis.

     

  • loading
  • [1]
    RINELLA ME, SANYAL AJ. NAFLD in 2014: Genetics, diagnostics and therapeutic advances in NAFLD[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(2): 65-66. DOI: 10.1038/nrgastro.2014.232.
    [2]
    National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association; Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: A 2018 update[J]. J Clin Hepatol, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.

    中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
    [3]
    JIAN J, ZHU X. Biological mechanism of intestinal flora in the occurrence and development of nonalcoholic fatty liver disease[J]. Chin J Biochem Mol Biol, 2020, 36(8): 888-894. DOI: 10.13865/j.cnki.cjbmb.2020.05.1061.

    简捷, 朱萱. 肠道菌群在非酒精性脂肪性肝病发生发展中的生物学机制[J]. 中国生物化学与分子生物学报, 2020, 36(8): 888-894. DOI: 10.13865/j.cnki.cjbmb.2020.05.1061.
    [4]
    MURAG S, AHMED A, KIM D. Recent epidemiology of nonalcoholic fatty liver disease[J]. Gut Liver, 2021, 15(2): 206-216. DOI: 10.5009/gnl20127
    [5]
    MICHELOTTI GA, MACHADO MV, DIEHL AM. NAFLD, NASH and liver cancer[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(11): 656-665. DOI: 10.1038/nrgastro.2013.183.
    [6]
    FRIEDMAN SL, NEUSCHWANDER-TETRI BA, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922. DOI: 10.1038/s41591-018-0104-9.
    [7]
    BUZZETTI E, PINZANI M, TSOCHATZIS EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048. DOI: 10.1016/j.metabol.2015.12.012.
    [8]
    HUI DC, SUN MY. Association between nonalcoholic fatty liver disease and gut microbiota based on the theory of gut-liver axis[J]. J Clin Hepatol, 2020, 36(7): 1627-1630. DOI: 10.3969/j.issn.1001-5256.2020.07.039.

    惠登城, 孙明瑜. 基于肠-肝轴理论探讨非酒精性脂肪性肝病和肠道菌群的关系[J]. 临床肝胆病杂志, 2020, 36(7): 1627-1630. DOI: 10.3969/j.issn.1001-5256.2020.07.039.
    [9]
    MENG Q, DUAN XP, WANG CY, et al. Alisol B 23-acetate protects against non-alcoholic steatohepatitis in mice via farnesoid X receptor activation[J]. Acta Pharmacol Sin, 2017, 38(1): 69-79. DOI: 10.1038/aps.2016.119.
    [10]
    PINGITORE A, CHAMBERS ES, HILL T, et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro[J]. Diabetes Obes Metab, 2017, 19(2): 257-265. DOI: 10.1111/dom.12811.
    [11]
    JIN CJ, SELLMANN C, ENGSTLER AJ, et al. Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH)[J]. Br J Nutr, 2015, 114(11): 1745-1755. DOI: 10.1017/S0007114515003621.
    [12]
    PERRY RJ, PENG L, BARRY NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome[J]. Nature, 2016, 534(7606): 213-217. DOI: 10.1038/nature18309.
    [13]
    ZHOU D, FAN JG. Microbial metabolites in non-alcoholic fatty liver disease[J]. World J Gastroenterol, 2019, 25(17): 2019-2028. DOI: 10.3748/wjg.v25.i17.2019.
    [14]
    CUI Y, WANG Q, CHANG R, et al. Intestinal barrier function-non-alcoholic fatty liver disease interactions and possible role of gut microbiota[J]. J Agric Food Chem, 2019, 67(10): 2754-2762. DOI: 10.1021/acs.jafc.9b00080.
    [15]
    Fatty liver and alcoholic liver disease group, Hepatology branch, Chinese Medical Association. Guidelines for the diagnosis and treatment of nonalcoholic fatty liver disease[J]. Chin Hepatol, 2006, 11(1): 68-70. DOI: 10.3969/j.issn.1008-1704.2006.01.032.

    中华医学会肝脏病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南[J]. 肝脏, 2006, 11(1): 68-70. DOI: 10.3969/j.issn.1008-1704.2006.01.032.
    [16]
    LIKHITSUP A, DUNDULIS J, ANSARI S, et al. Prevalence of non-alcoholic fatty liver disease on computed tomography in patients with inflammatory bowel disease visiting an emergency department[J]. Ann Gastroenterol, 2019, 32(3): 283-286. DOI: 10.20524/aog.2019.0371.
    [17]
    YOUNOSSI ZM, MARCHESINI G, PINTO-CORTEZ H, et al. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: Implications for liver transplantation[J]. Transplantation, 2019, 103(1): 22-27. DOI: 10.1097/TP.0000000000002484.
    [18]
    LOOMBA R, FRIEDMAN SL, SHULMAN GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease[J]. Cell, 2021, 184(10): 2537-2564. DOI: 10.1016/j.cell.2021.04.015.
    [19]
    THANAPIROM K, TSOCHATZIS EA. Non-alcoholic fatty liver disease (NAFLD) and the quest for effective treatments[J]. Hepatobiliary Surg Nutr, 2019, 8(1): 77-79. DOI: 10.21037/hbsn.2018.11.06.
    [20]
    DOU KF, YANG XS. Surgeons should attach importance to the understanding of metabolic associated fatty liver disease[J]. Chin J Dig Surg, 2021, 1(1): 40-45. DOI: 10.3760/cma.j.cn115610-20201214-00780.

    窦科峰, 杨西胜. 外科医师应重视对代谢相关脂肪性肝病的认识[J]. 中华消化外科杂志, 2021, 1(1): 40-45. DOI: 10.3760/cma.j.cn115610-20201214-00780.
    [21]
    LIAN XX, GUO XX. Research progress of gut liver axis theory[J]. Chin J Integr Tradit West Med Liver Dis, 2017, 27(4): 251-254. DOI: 10.3969/j.issn.1005-0264.2017.04.023.

    廉晓晓, 郭晓霞. 肠-肝轴学说的研究进展[J]. 中西医结合肝病杂志, 2017, 27(4): 251-254. DOI: 10.3969/j.issn.1005-0264.2017.04.023.
    [22]
    ZHANG YN, LIU YT. Correlation between the degree of liver fibrosis and chronic kidney disease in patients with nonalcoholic fatty liver disease[J]. Chin J Gerontol, 2021, 41(19): 4214-4218. DOI: 10.3969/j.issn.1005-9202.2021.19.018.

    章雅南, 刘奕婷. 非酒精性脂肪性肝病患者肝纤维化程度与慢性肾病的相关性[J]. 中国老年学杂志, 2021, 41(19): 4214-4218. DOI: 10.3969/j.issn.1005-9202.2021.19.018.
    [23]
    GANAPATHY V, THANGARAJU M, PRASAD PD, et al. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host[J]. Curr Opin Pharmacol, 2013, 13(6): 869-874. DOI: 10.1016/j.coph.2013.08.006.
    [24]
    LIU SZ, ZHANG Y, ZHANG MW, et al. Research progress on the production mechanism and physiological function of intestinal short chain fatty acids[J]. Guangdong Agricultural Science, 2013, 40(11): 99-103. DOI: 10.3969/j.issn.1004-874x.2013.11.029.

    刘松珍, 张雁, 张名位, 等. 肠道短链脂肪酸产生机制及生理功能的研究进展[J]. 广东农业科学, 2013, 40(11): 99-103. DOI: 10.3969/j.issn.1004-874X.2013.11.029.
    [25]
    BOETS E, GOMAND SV, DEROOVER L, et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: A stable isotope study[J]. J Physiol, 2017, 595(2): 541-555. DOI: 10.1113/JP272613.
    [26]
    CUI LH. Relationship between gut microbiota and digestive disease[J] Acad J Chinese PLA Postgrad Med Sch, 2015, 36 (10): 965-969. DOI: 10.3969/j.issn.2095-5227.2015.10.001.

    崔立红. 肠道菌群与消化系疾病的关系[J]. 解放军医学院学报, 2015, 36(10): 965-969. DOI: 10.3969/j.issn.2095-5227.2015.10.001.
    [27]
    TILG H, MOSCHEN AR, RODEN M. NAFLD and diabetes mellitus[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(1): 32-42. DOI: 10.1038/nrgastro.2016.147.
    [28]
    KHNEIZER G, RIZVI S, GAWRIEH S. Non-alcoholic fatty liver disease and diabetes mellitus[J]. Adv Exp Med Biol, 2021, 1307: 417-440. DOI: 10.1007/5584_2020_532.
    [29]
    POLYZOS SA, KOUNTOURAS J, MANTZOROS CS. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutic[J]. Metabolism, 2019, 92: 82-97. DOI: 10.1016/j.metabol.2018.11.014.
    [30]
    YIN JM. Investigation on NAFLD prevalence and risk factors based on physical examination population[D]. Tianjin: Tianjin Medical University, 2012.

    殷珺妹. 基于健康体检人群的NAFLD患病率及危险因素调查[D]. 天津: 天津医科大学, 2012.
    [31]
    EDDOWES PJ, SASSO M, ALLISON M, et al. Accuracy of fibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease[J]. Gastroenterology, 2019, 156(6): 1717-1730. DOI: 10.1053/j.gastro.2019.01.042.
    [32]
    VUPPALANCHI R, SIDDIQUI MS, VAN NATTA ML, et al. Performance characteristics of vibration-controlled transient elastography for evaluation of nonalcoholic fatty liver disease[J]. Hepatology, 2018, 67(1): 134-144. DOI: 10.1002/hep.29489.
    [33]
    CHENG J, LI FL, ZHANG B, et al. Effect of high-fat diet on intestinal short chain fatty acids in rats with nonalcoholic fatty liver disease[J]. Chin J Clin Nutr, 2016, 24(4): 236-240. DOI: 10.3760/cma.j.issn.1674-635x.2016.04.009.

    程靖, 李枫林, 张宝, 等. 高脂饮食对非酒精性脂肪肝病模型大鼠肠道短链脂肪酸的影响[J]. 中华临床营养杂志, 2016, 24(4): 236-240. DOI: 10.3760/cma.j.issn.1674-635X.2016.04.009.
    [34]
    LIANG Y, LIN C, ZHANG Y, et al. Probiotic mixture of Lactobacillus and Bifidobacterium alleviates systemic adiposity and inflammation in non-alcoholic fatty liver disease rats through Gpr109a and the commensal metabolite butyrate[J]. Inflammopharmacology, 2018, 26(4): 1051-1055. DOI: 10.1007/s10787-018-0479-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(6)

    Article Metrics

    Article views (865) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return