[1] |
YUEN MF, CHEN DS, DUSHEIKO GM, et al. Hepatitis B virus infection[J]. Nat Rev Dis Primers, 2018, 4: 18035. DOI: 10.1038/nrdp.2018.35.
|
[2] |
FANNING GC, ZOULIM F, HOU J, et al. Therapeutic strategies for hepatitis B virus infection: towards a cure[J]. Nat Rev Drug Discov, 2019, 18(11): 827-844. DOI: 10.1038/s41573-019-0037-0.
|
[3] |
SHIH C, CHOU SF, YANG CC, et al. Control and eradication strategies of hepatitis B virus[J]. Trends Microbiol, 2016, 24(9): 739-749. DOI: 10.1016/j.tim.2016.05.006.
|
[4] |
REVILL P, TESTONI B, LOCARNINI S, et al. Global strategies are required to cure and eliminate HBV infection[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(4): 239-248. DOI: 10.1038/nrgastro.2016.7.
|
[5] |
YAN H, ZHONG G, XU G, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus[J]. Elife, 2012, 1: e00049. DOI: 10.7554/eLife.00049.
|
[6] |
WEI L, PLOSS A. Core components of DNA lagging strand synthesis machinery are essential for hepatitis B virus cccDNA formation[J]. Nat Microbiol, 2020, 5(5): 715-726. DOI: 10.1038/s41564-020-0678-0.
|
[7] |
WEI L, PLOSS A. Hepatitis B virus cccDNA is formed through distinct repair processes of each strand[J]. Nat Commun, 2021, 12(1): 1591. DOI: 10.1038/s41467-021-21850-9.
|
[8] |
NASSAL M. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B[J]. Gut, 2015, 64(12): 1972-1984. DOI: 10.1136/gutjnl-2015-309809.
|
[9] |
TURTON KL, MEIER-STEPHENSON V, BADMALIA MD, et al. Host transcription factors in hepatitis B virus RNA synthesis[J]. Viruses, 2020, 12(2): 160. DOI: 10.3390/v12020160.
|
[10] |
KIM DH, KANG HS, KIM KH. Roles of hepatocyte nuclear factors in hepatitis B virus infection[J]. World J Gastroenterol, 2016, 22(31): 7017-7029. DOI: 10.3748/wjg.v22.i31.7017.
|
[11] |
OROPEZA CE, TARNOW G, SRIDHAR A, et al. The regulation of HBV transcription and replication[J]. Adv Exp Med Biol, 2020, 1179: 39-69. DOI: 10.1007/978-981-13-9151-4_3.
|
[12] |
VIVEKANANDAN P, DANIEL HD, KANNANGAI R, et al. Hepatitis B virus replication induces methylation of both host and viral DNA[J]. J Virol, 2010, 84(9): 4321-4329. DOI: 10.1128/JVI.02280-09.
|
[13] |
POLLICINO T, BELLONI L, RAFFA G, et al. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones[J]. Gastroenterology, 2006, 130(3): 823-837. DOI: 10.1053/j.gastro.2006.01.001.
|
[14] |
BELLONI L, ALLWEISS L, GUERRIERI F, et al. IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome[J]. J Clin Invest, 2012, 122(2): 529-537. DOI: 10.1172/JCI58847.
|
[15] |
BENHENDA S, DUCROUX A, RIVIÈRE L, et al. Methyltransferase PRMT1 is a binding partner of HBx and a negative regulator of hepatitis B virus transcription[J]. J Virol, 2013, 87(8): 4360-4371. DOI: 10.1128/JVI.02574-12.
|
[16] |
ZHANG W, CHEN J, WU M, et al. PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation[J]. Hepatology, 2017, 66(2): 398-415. DOI: 10.1002/hep.29133.
|
[17] |
REN JH, HU JL, CHENG ST, et al. SIRT3 restricts hepatitis B virus transcription and replication through epigenetic regulation of covalently closed circular DNA involving suppressor of variegation 3-9 homolog 1 and SET domain containing 1A histone methyltransferases[J]. Hepatology, 2018, 68(4): 1260-1276. DOI: 10.1002/hep.29912.
|
[18] |
WEI W, LIU X, CHEN J, et al. Class I histone deacetylases are major histone decrotonylases: evidence for critical and broad function of histone crotonylation in transcription[J]. Cell Res, 2017, 27(7): 898-915. DOI: 10.1038/cr.2017.68.
|
[19] |
WANG Y, GUO YR, LIU K, et al. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase[J]. Nature, 2017, 552(7684): 273-277. DOI: 10.1038/nature25003.
|
[20] |
KEBEDE AF, NIEBORAK A, SHAHIDIAN LZ, et al. Histone propionylation is a mark of active chromatin[J]. Nat Struct Mol Biol, 2017, 24(12): 1048-1056. DOI: 10.1038/nsmb.3490.
|
[21] |
ISHIGURO T, TANABE K, KOBAYASHI Y, et al. Malonylation of histone H2A at lysine 119 inhibits Bub1-dependent H2A phosphorylation and chromosomal localization of shugoshin proteins[J]. Sci Rep, 2018, 8(1): 7671. DOI: 10.1038/s41598-018-26114-z.
|
[22] |
LU Y, XU Q, LIU Y, et al. Dynamics and functional interplay of histone lysine butyrylation, crotonylation, and acetylation in rice under starvation and submergence[J]. Genome Biol, 2018, 19(1): 144. DOI: 10.1186/s13059-018-1533-y.
|
[23] |
BELLONI L, POLLICINO T, DE NICOLA F, et al. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function[J]. Proc Natl Acad Sci U S A, 2009, 106(47): 19975-19979. DOI: 10.1073/pnas.0908365106.
|
[24] |
RIVIÈRE L, GEROSSIER L, DUCROUX A, et al. HBx relieves chromatin-mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1 histone methyltransferase[J]. J Hepatol, 2015, 63(5): 1093-1102. DOI: 10.1016/j.jhep.2015.06.023.
|
[25] |
DECORSIÈRE A, MUELLER H, van BREUGEL PC, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor[J]. Nature, 2016, 531(7594): 386-389. DOI: 10.1038/nature17170.
|
[26] |
MINOR MM, HOLLINGER FB, MCNEES AL, et al. Hepatitis B virus HBx protein mediates the degradation of host restriction factors through the cullin 4 DDB1 E3 ubiquitin ligase complex[J]. Cells, 2020, 9(4): 834. DOI: 10.3390/cells9040834.
|
[27] |
ZHU Y, YAMAMOTO T, CULLEN J, et al. Kinetics of hepadnavirus loss from the liver during inhibition of viral DNA synthesis[J]. J Virol, 2001, 75(1): 311-322. DOI: 10.1128/JVI.75.1.311-322.2001.
|
[28] |
ADDISON WR, WALTERS KA, WONG WW, et al. Half-life of the duck hepatitis B virus covalently closed circular DNA pool in vivo following inhibition of viral replication[J]. J Virol, 2002, 76(12): 6356-6363. DOI: 10.1128/jvi.76.12.6356-6363.2002.
|
[29] |
XIA Y, STADLER D, LUCIFORA J, et al. Interferon-γ and tumor necrosis factor-α produced by T cells reduce the HBV persistence form, cccDNA, without cytolysis[J]. Gastroenterology, 2016, 150(1): 194-205. DOI: 10.1053/j.gastro.2015.09.026.
|
[30] |
TSIANG M, GIBBS CS. Analysis of hepatitis B virus dynamics and its impact on antiviral development[J]. Methods Mol Med, 2004, 96: 361-377. DOI: 10.1385/1-59259-670-3:361.
|
[31] |
HUANG Q, ZHOU B, CAI D, et al. Rapid turnover of hepatitis B virus covalently closed circular DNA indicated by monitoring emergence and reversion of signature-mutation in treated chronic hepatitis B patients[J]. Hepatology, 2021, 73(1): 41-52. DOI: 10.1002/hep.31240.
|
[32] |
LUCIFORA J, XIA Y, REISINGER F, et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA[J]. Science, 2014, 343(6176): 1221-1228. DOI: 10.1126/science.1243462.
|
[33] |
STADLER D, KÄCHELE M, JONES AN, et al. Interferon-induced degradation of the persistent hepatitis B virus cccDNA form depends on ISG20[J]. EMBO Rep, 2021, 22(6): e49568. DOI: 10.15252/embr.201949568.
|
[34] |
ZHOU L, REN JH, CHENG ST, et al. A functional variant in ubiquitin conjugating enzyme E2 L3 contributes to hepatitis B virus infection and maintains covalently closed circular DNA stability by inducing degradation of apolipoprotein B mRNA editing enzyme catalytic subunit 3A[J]. Hepatology, 2019, 69(5): 1885-1902. DOI: 10.1002/hep.30497.
|
[35] |
PETERSEN J, DANDRI M, MIER W, et al. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein[J]. Nat Biotechnol, 2008, 26(3): 335-341. DOI: 10.1038/nbt1389.
|
[36] |
VOLZ T, ALLWEISS L, BEN MBAREK M, et al. The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus[J]. J Hepatol, 2013, 58(5): 861-867. DOI: 10.1016/j.jhep.2012.12.008.
|
[37] |
YAN H, PENG B, LIU Y, et al. Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide[J]. J Virol, 2014, 88(6): 3273-3284. DOI: 10.1128/JVI.03478-13.
|
[38] |
PENG L, ZHAO Q, LI Q, et al. The p. Ser267Phe variant in SLC10A1 is associated with resistance to chronic hepatitis B[J]. Hepatology, 2015, 61(4): 1251-1260. DOI: 10.1002/hep.27608.
|
[39] |
HU HH, LIU J, LIN YL, et al. The rs2296651(S267F) variant on NTCP (SLC10A1) is inversely associated with chronic hepatitis B and progression to cirrhosis and hepatocellular carcinoma in patients with chronic hepatitis B[J]. Gut, 2016, 65(9): 1514-1521. DOI: 10.1136/gutjnl-2015-310686.
|
[40] |
CAI D, MILLS C, YU W, et al. Identification of disubstituted sulfonamide compounds as specific inhibitors of hepatitis B virus covalently closed circular DNA formation[J]. Antimicrob Agents Chemother, 2012, 56(8): 4277-4288. DOI: 10.1128/AAC.00473-12.
|
[41] |
SETTEN RL, ROSSI JJ, HAN SP. The current state and future directions of RNAi-based therapeutics[J]. Nat Rev Drug Discov, 2019, 18(6): 421-446. DOI: 10.1038/s41573-019-0017-4.
|
[42] |
CHENG ST, HU JL, REN JH, et al. Dicoumarol, an NQO1 inhibitor, blocks cccDNA transcription by promoting degradation of HBx[J]. J Hepatol, 2021, 74(3): 522-534. DOI: 10.1016/j.jhep.2020.09.019.
|
[43] |
LAMB C, ARBUTHNOT P. Activating the innate immune response to counter chronic hepatitis B virus infection[J]. Expert Opin Biol Ther, 2016, 16(12): 1517-1527. DOI: 10.1080/14712598.2016.1233962.
|
[44] |
KUSCU C, ARSLAN S, SINGH R, et al. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease[J]. Nat Biotechnol, 2014, 32(7): 677-683. DOI: 10.1038/nbt.2916.
|
[45] |
WANG J, XU ZW, LIU S, et al. Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication[J]. World J Gastroenterol, 2015, 21(32): 9554-9565. DOI: 10.3748/wjg.v21.i32.9554.
|