[1] |
WU T, CHEN L. New progress in precision diagnosis and treatment of liver cancer[J]. J Clin Hepatol, 2022, 38(3): 497-498. DOI: 10.3969/j.issn.1001-5256.2022.03.001.
吴彤, 陈磊. 肝癌精准诊疗新进展[J]. 临床肝胆病杂志, 2022, 38(3): 497-498. DOI: 10.3969/j.issn.1001-5256.2022.03.001.
|
[2] |
FU J, WANG H. Precision diagnosis and treatment of liver cancer in China[J]. Cancer Lett, 2018, 412: 283-288. DOI: 10.1016/j.canlet.2017.10.008.
|
[3] |
YANG JD, HAINAUT P, GORES GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. DOI: 10.1038/s41575-019-0186-y.
|
[4] |
BERTRAND N, WU J, XU X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology[J]. Adv Drug Deliv Rev, 2014, 66: 2-25. DOI: 10.1016/j.addr.2013.11.009.
|
[5] |
ZHANG LM, TIAN Y, LI Q. Antitumor effect of shikonin loaded milk derived exosomes on hepatoma cells[J]. Chin J Dig Surg, 2021, 20(12): 1313-1317. DOI: 10.3760/cma.j.cn115610-20211111-00557.
张礼萌, 田野, 李强. 牛乳-紫草素纳米载药体系对肝癌细胞的杀伤作用研究[J]. 中华消化外科杂志, 2021, 20(12): 1313-1317. DOI: 10.3760/cma.j.cn115610-20211111-00557.
|
[6] |
ZHANG YN, POON W, TAVARES AJ, et al. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination[J]. J Control Release, 2016, 240: 332-348. DOI: 10.1016/j.jconrel.2016.01.020.
|
[7] |
KUMARI P, GHOSH B, BISWAS S. Nanocarriers for cancer-targeted drug delivery[J]. J Drug Target, 2016, 24(3): 179-191. DOI: 10.3109/1061186X.2015.1051049.
|
[8] |
DANHIER F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?[J]. J Control Release, 2016, 244(Pt A): 108-121. DOI: 10.1016/j.jconrel.2016.11.015.
|
[9] |
KANG H, RHO S, STILES WR, et al. Size-dependent EPR effect of polymeric nanoparticles on tumor targeting[J]. Adv Healthc Mater, 2020, 9(1): e1901223. DOI: 10.1002/adhm.201901223.
|
[10] |
ROSENBLUM D, JOSHI N, TAO W, et al. Progress and challenges towards targeted delivery of cancer therapeutics[J]. Nat Commun, 2018, 9(1): 1410. DOI: 10.1038/s41467-018-03705-y.
|
[11] |
BAR-ZEEV M, LIVNEY YD, ASSARAF YG. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance[J]. Drug Resist Updat, 2017, 31: 15-30. DOI: 10.1016/j.drup.2017.05.002.
|
[12] |
ZHANG Y, CAO J, YUAN Z. Strategies and challenges to improve the performance of tumor-associated active targeting[J]. J Mater Chem B, 2020, 8(18): 3959-3971. DOI: 10.1039/d0tb00289e.
|
[13] |
ELNAGGAR MH, ABUSHOUK AI, HASSAN A, et al. Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma[J]. Semin Cancer Biol, 2021, 69: 91-99. DOI: 10.1016/j.semcancer.2019.08.016.
|
[14] |
LIU G, LOVELL JF, ZHANG L, et al. Stimulus-responsive nanomedicines for disease diagnosis and treatment[J]. Int J Mol Sci, 2020, 21(17): 6380. DOI: 10.3390/ijms21176380.
|
[15] |
ZAHEDNEZHAD F, SAADAT M, VALIZADEH H, et al. Liposome and immune system interplay: Challenges and potentials[J]. J Control Release, 2019, 305: 194-209. DOI: 10.1016/j.jconrel.2019.05.030.
|
[16] |
YE H, ZHOU L, JIN H, et al. Sorafenib-loaded long-circulating nanoliposomes for liver cancer therapy[J]. Biomed Res Int, 2020, 2020: 1351046. DOI: 10.1155/2020/1351046.
|
[17] |
LU XY, WU DC, LI ZJ, et al. Polymer nanoparticles[J]. Prog Mol Biol Transl Sci, 2011, 104: 299-323. DOI: 10.1016/B978-0-12-416020-0.00007-3.
|
[18] |
JIANG L, WANG Y, WEI X, et al. Improvement in phenotype homeostasis of macrophages by chitosan nanoparticles and subsequent impacts on liver injury and tumor treatment[J]. Carbohydr Polym, 2022, 277: 118891. DOI: 10.1016/j.carbpol.2021.118891.
|
[19] |
ELZAYAT A, ADAM-CERVERA I, ÁLVAREZ-BERM ÚDEZ O, et al. Nanoemulsions for synthesis of biomedical nanocarriers[J]. Colloids Surf B Biointerfaces, 2021, 203: 111764. DOI: 10.1016/j.colsurfb.2021.111764.
|
[20] |
JI G, MA L, YAO H, et al. Precise delivery of obeticholic acid via nanoapproach for triggering natural killer T cell-mediated liver cancer immunotherapy[J]. Acta Pharm Sin B, 2020, 10(11): 2171-2182. DOI: 10.1016/j.apsb.2020.09.004.
|
[21] |
YANG G, PHUA S, BINDRA AK, et al. Degradability and clearance of inorganic nanoparticles for biomedical applications[J]. Adv Mater, 2019, 31(10): e1805730. DOI: 10.1002/adma.201805730.
|
[22] |
TAGHIZADEH S, ALIMARDANI V, ROUDBALI PL, et al. Gold nanoparticles application in liver cancer[J]. Photodiagnosis Photodyn Ther, 2019, 25: 389-400. DOI: 10.1016/j.pdpdt.2019.01.027.
|
[23] |
CAI H, YANG Y, PENG F, et al. Gold nanoparticles-loaded anti-miR221 enhances antitumor effect of sorafenib in hepatocellular carcinoma cells[J]. Int J Med Sci, 2019, 16(12): 1541-1548. DOI: 10.7150/ijms.37427.
|
[24] |
CHEN L, LIU J, ZHANG Y, et al. The toxicity of silica nanoparticles to the immune system[J]. Nanomedicine (Lond), 2018, 13(15): 1939-1962. DOI: 10.2217/nnm-2018-0076.
|
[25] |
CHANG D, GAO Y, WANG L, et al. Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy[J]. J Colloid Interface Sci, 2016, 463: 279-287. DOI: 10.1016/j.jcis.2015.11.001.
|
[26] |
YUE J, LUO SZ, LU MM, et al. A comparison of mesoporous silica nanoparticles and mesoporous organosilica nanoparticles as drug vehicles for cancer therapy[J]. Chem Biol Drug Des, 2018, 92(2): 1435-1444. DOI: 10.1111/cbdd.13309.
|
[27] |
LIU YY, CHANG BM, CHANG HC. Nanodiamond-enabled biomedical imaging[J]. Nanomedicine (Lond), 2020, 15(16): 1599-1616. DOI: 10.2217/nnm-2020-0091.
|
[28] |
FARRA R, GRASSI M, GRASSI G, et al. Therapeutic potential of small interfering RNAs/micro interfering RNA in hepatocellular carcinoma[J]. World J Gastroenterol, 2015, 21(30): 8994-9001. DOI: 10.3748/wjg.v21.i30.8994.
|
[29] |
XU J, GU M, HOOI L, et al. Enhanced penetrative siRNA delivery by a nanodiamond drug delivery platform against hepatocellular carcinoma 3D models[J]. Nanoscale, 2021, 13(38): 16131-16145. DOI: 10.1039/d1nr03502a.
|
[30] |
SHAO YM, ZHANG Y, YIN X. et al. Value of Sal-like 4 in the diagnosis and treatment of primary liver cancer[J]. J Clin Hepatol, 2019, 35(10): 2320-2323. DOI: 10.3969/j.issn.1001-5256.2019.10.041.
邵玥明, 张雨, 殷鑫, 等. SALL4在原发性肝癌诊治中的价值[J]. 临床肝胆病杂志, 2019, 35(10): 2320-2323. DOI: 10.3969/j.issn.1001-5256.2019.10.041.
|
[31] |
MOHANTY A, UTHAMAN S, PARK IK. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy[J]. Molecules, 2020, 25(19): 4377. DOI: 10.3390/molecules25194377.
|
[32] |
ZHANG J, HU J, CHAN HF, et al. iRGD decorated lipid-polymer hybrid nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance anti-hepatocellular carcinoma efficacy[J]. Nanomedicine, 2016, 12(5): 1303-1311. DOI: 10.1016/j.nano.2016.01.017.
|
[33] |
GILIOPOULOS D, ZAMBOULIS A, GIANNAKOUDAKIS D, et al. Polymer/Metal Organic Framework (MOF) nanocomposites for biomedical applications[J]. Molecules, 2020, 25(1): 185. DOI: 10.3390/molecules25010185.
|
[34] |
FYTORY M, ARAFA KK, EL ROUBY W, et al. Dual-ligated metal organic framework as novel multifunctional nanovehicle for targeted drug delivery for hepatic cancer treatment[J]. Sci Rep, 2021, 11(1): 19808. DOI: 10.1038/s41598-021-99407-5.
|
[35] |
CHEN L, HONG W, REN W, et al. Recent progress in targeted delivery vectors based on biomimetic nanoparticles[J]. Signal Transduct Target Ther, 2021, 6(1): 225. DOI: 10.1038/s41392-021-00631-2.
|
[36] |
XIA Q, ZHANG Y, LI Z, et al. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application[J]. Acta Pharm Sin B, 2019, 9(4): 675-689. DOI: 10.1016/j.apsb.2019.01.011.
|
[37] |
KONG D, JIANG T, LIU J, et al. Chemoembolizing hepatocellular carcinoma with microsphere cored with arsenic trioxide microcrystal[J]. Drug Deliv, 2020, 27(1): 1729-1740. DOI: 10.1080/10717544.2020.1856219.
|
[38] |
LIAN Y, WANG X, GUO P, et al. Erythrocyte membrane-coated arsenic trioxide-loaded sodium alginate nanoparticles for tumor therapy[J]. Pharmaceutics, 2019, 12(1): 21. DOI: 10.3390/pharmaceutics12010021.
|
[39] |
JAILLON S, PONZETTA A, DI MITRI D, et al. Neutrophil diversity and plasticity in tumour progression and therapy[J]. Nat Rev Cancer, 2020, 20(9): 485-503. DOI: 10.1038/s41568-020-0281-y.
|
[40] |
ZHANG Z, LI D, CAO Y, et al. Biodegradable Hypocrellin B nanoparticles coated with neutrophil membranes for hepatocellular carcinoma photodynamics therapy effectively via JUNB/ROS signaling[J]. Int Immunopharmacol, 2021, 99: 107624. DOI: 10.1016/j.intimp.2021.107624.
|
[41] |
HUANG AC, POSTOW MA, ORLOWSKI RJ, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response[J]. Nature, 2017, 545(7652): 60-65. DOI: 10.1038/nature22079.
|
[42] |
SHEN N, WU J, YANG C, et al. Combretastatin A4 nanoparticles combined with hypoxia-sensitive imiquimod: a new paradigm for the modulation of host immunological responses during cancer treatment[J]. Nano Lett, 2019, 19(11): 8021-8031. DOI: 10.1021/acs.nanolett.9b03214.
|
[43] |
VORON T, COLUSSI O, MARCHETEAU E, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors[J]. J Exp Med, 2015, 212(2): 139-148. DOI: 10.1084/jem.20140559.
|
[44] |
BAO X, SHEN N, LOU Y, et al. Enhanced anti-PD-1 therapy in hepatocellular carcinoma by tumor vascular disruption and normalization dependent on combretastatin A4 nanoparticles and DC101[J]. Theranostics, 2021, 11(12): 5955-5969. DOI: 10.7150/thno.58164.
|
[45] |
LI H, SHI S, WU M, et al. iRGD peptide-mediated liposomal nanoparticles with photoacoustic/ultrasound dual-modality imaging for precision theranostics against hepatocellular carcinoma[J]. Int J Nanomedicine, 2021, 16: 6455-6475. DOI: 10.2147/IJN.S325891.
|
[46] |
LI S, YIN G, PU X, et al. A novel tumor-targeted thermosensitive liposomal cerasome used for thermally controlled drug release[J]. Int J Pharm, 2019, 570: 118660. DOI: 10.1016/j.ijpharm.2019.118660.
|
[47] |
LYON PC, GRAY MD, MANNARIS C, et al. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): a single-centre, open-label, phase 1 trial[J]. Lancet Oncol, 2018, 19(8): 1027-1039. DOI: 10.1016/S1470-2045(18)30332-2.
|
[48] |
HASHIMOTO A, SARKER D, REEBYE V, et al. Upregulation of C/EBPα inhibits suppressive activity of myeloid cells and potentiates antitumor response in mice and patients with cancer[J]. Clin Cancer Res, 2021, 27(21): 5961-5978. DOI: 10.1158/1078-0432.CCR-21-0986.
|
[49] |
SARKER D, PLUMMER R, MEYER T, et al. MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-α, in patients with advanced liver cancer: a first-in-human, multicenter, open-label, phase I trial[J]. Clin Cancer Res, 2020, 26(15): 3936-3946. DOI: 10.1158/1078-0432.CCR-20-0414.
|