中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 8
Aug.  2022
Turn off MathJax
Article Contents

Research advances in nano-drug delivery system in liver cancer treatment

DOI: 10.3969/j.issn.1001-5256.2022.08.037
Research funding:

Guangxi Science and Technology Project (guikeAB20297002);

Innovation Project of Guangxi Graduate Education of GXUCM (YCBXJ2022021)

More Information
  • Corresponding author: DENG Xin, dx8848@126.com(ORCID:0000-0001-6835-7901)
  • Received Date: 2022-02-27
  • Accepted Date: 2022-04-11
  • Published Date: 2022-08-20
  • Traditional surgical resection, radiotherapy, and chemotherapy still play a dominant role in the treatment of liver cancer; however, their application in liver cancer patients is often limited by the toxic and side effects, unstable efficacy, and unclear targets of chemotherapeutic drugs. Therefore, in order to improve the efficacy of drugs in the treatment of liver cancer, nanomedicine, which has been developed in the biomedical field in recent years, has attracted more and more attention. Nano-drug delivery system has been gradually applied in clinical research for its advantages of low toxicity, wide bioavailability, controllable drug release, and good stability. This article focuses on the latest research advances in nano-drug delivery system in the treatment of liver cancer.

     

  • loading
  • [1]
    WU T, CHEN L. New progress in precision diagnosis and treatment of liver cancer[J]. J Clin Hepatol, 2022, 38(3): 497-498. DOI: 10.3969/j.issn.1001-5256.2022.03.001.

    吴彤, 陈磊. 肝癌精准诊疗新进展[J]. 临床肝胆病杂志, 2022, 38(3): 497-498. DOI: 10.3969/j.issn.1001-5256.2022.03.001.
    [2]
    FU J, WANG H. Precision diagnosis and treatment of liver cancer in China[J]. Cancer Lett, 2018, 412: 283-288. DOI: 10.1016/j.canlet.2017.10.008.
    [3]
    YANG JD, HAINAUT P, GORES GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. DOI: 10.1038/s41575-019-0186-y.
    [4]
    BERTRAND N, WU J, XU X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology[J]. Adv Drug Deliv Rev, 2014, 66: 2-25. DOI: 10.1016/j.addr.2013.11.009.
    [5]
    ZHANG LM, TIAN Y, LI Q. Antitumor effect of shikonin loaded milk derived exosomes on hepatoma cells[J]. Chin J Dig Surg, 2021, 20(12): 1313-1317. DOI: 10.3760/cma.j.cn115610-20211111-00557.

    张礼萌, 田野, 李强. 牛乳-紫草素纳米载药体系对肝癌细胞的杀伤作用研究[J]. 中华消化外科杂志, 2021, 20(12): 1313-1317. DOI: 10.3760/cma.j.cn115610-20211111-00557.
    [6]
    ZHANG YN, POON W, TAVARES AJ, et al. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination[J]. J Control Release, 2016, 240: 332-348. DOI: 10.1016/j.jconrel.2016.01.020.
    [7]
    KUMARI P, GHOSH B, BISWAS S. Nanocarriers for cancer-targeted drug delivery[J]. J Drug Target, 2016, 24(3): 179-191. DOI: 10.3109/1061186X.2015.1051049.
    [8]
    DANHIER F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?[J]. J Control Release, 2016, 244(Pt A): 108-121. DOI: 10.1016/j.jconrel.2016.11.015.
    [9]
    KANG H, RHO S, STILES WR, et al. Size-dependent EPR effect of polymeric nanoparticles on tumor targeting[J]. Adv Healthc Mater, 2020, 9(1): e1901223. DOI: 10.1002/adhm.201901223.
    [10]
    ROSENBLUM D, JOSHI N, TAO W, et al. Progress and challenges towards targeted delivery of cancer therapeutics[J]. Nat Commun, 2018, 9(1): 1410. DOI: 10.1038/s41467-018-03705-y.
    [11]
    BAR-ZEEV M, LIVNEY YD, ASSARAF YG. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance[J]. Drug Resist Updat, 2017, 31: 15-30. DOI: 10.1016/j.drup.2017.05.002.
    [12]
    ZHANG Y, CAO J, YUAN Z. Strategies and challenges to improve the performance of tumor-associated active targeting[J]. J Mater Chem B, 2020, 8(18): 3959-3971. DOI: 10.1039/d0tb00289e.
    [13]
    ELNAGGAR MH, ABUSHOUK AI, HASSAN A, et al. Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma[J]. Semin Cancer Biol, 2021, 69: 91-99. DOI: 10.1016/j.semcancer.2019.08.016.
    [14]
    LIU G, LOVELL JF, ZHANG L, et al. Stimulus-responsive nanomedicines for disease diagnosis and treatment[J]. Int J Mol Sci, 2020, 21(17): 6380. DOI: 10.3390/ijms21176380.
    [15]
    ZAHEDNEZHAD F, SAADAT M, VALIZADEH H, et al. Liposome and immune system interplay: Challenges and potentials[J]. J Control Release, 2019, 305: 194-209. DOI: 10.1016/j.jconrel.2019.05.030.
    [16]
    YE H, ZHOU L, JIN H, et al. Sorafenib-loaded long-circulating nanoliposomes for liver cancer therapy[J]. Biomed Res Int, 2020, 2020: 1351046. DOI: 10.1155/2020/1351046.
    [17]
    LU XY, WU DC, LI ZJ, et al. Polymer nanoparticles[J]. Prog Mol Biol Transl Sci, 2011, 104: 299-323. DOI: 10.1016/B978-0-12-416020-0.00007-3.
    [18]
    JIANG L, WANG Y, WEI X, et al. Improvement in phenotype homeostasis of macrophages by chitosan nanoparticles and subsequent impacts on liver injury and tumor treatment[J]. Carbohydr Polym, 2022, 277: 118891. DOI: 10.1016/j.carbpol.2021.118891.
    [19]
    ELZAYAT A, ADAM-CERVERA I, ÁLVAREZ-BERM ÚDEZ O, et al. Nanoemulsions for synthesis of biomedical nanocarriers[J]. Colloids Surf B Biointerfaces, 2021, 203: 111764. DOI: 10.1016/j.colsurfb.2021.111764.
    [20]
    JI G, MA L, YAO H, et al. Precise delivery of obeticholic acid via nanoapproach for triggering natural killer T cell-mediated liver cancer immunotherapy[J]. Acta Pharm Sin B, 2020, 10(11): 2171-2182. DOI: 10.1016/j.apsb.2020.09.004.
    [21]
    YANG G, PHUA S, BINDRA AK, et al. Degradability and clearance of inorganic nanoparticles for biomedical applications[J]. Adv Mater, 2019, 31(10): e1805730. DOI: 10.1002/adma.201805730.
    [22]
    TAGHIZADEH S, ALIMARDANI V, ROUDBALI PL, et al. Gold nanoparticles application in liver cancer[J]. Photodiagnosis Photodyn Ther, 2019, 25: 389-400. DOI: 10.1016/j.pdpdt.2019.01.027.
    [23]
    CAI H, YANG Y, PENG F, et al. Gold nanoparticles-loaded anti-miR221 enhances antitumor effect of sorafenib in hepatocellular carcinoma cells[J]. Int J Med Sci, 2019, 16(12): 1541-1548. DOI: 10.7150/ijms.37427.
    [24]
    CHEN L, LIU J, ZHANG Y, et al. The toxicity of silica nanoparticles to the immune system[J]. Nanomedicine (Lond), 2018, 13(15): 1939-1962. DOI: 10.2217/nnm-2018-0076.
    [25]
    CHANG D, GAO Y, WANG L, et al. Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy[J]. J Colloid Interface Sci, 2016, 463: 279-287. DOI: 10.1016/j.jcis.2015.11.001.
    [26]
    YUE J, LUO SZ, LU MM, et al. A comparison of mesoporous silica nanoparticles and mesoporous organosilica nanoparticles as drug vehicles for cancer therapy[J]. Chem Biol Drug Des, 2018, 92(2): 1435-1444. DOI: 10.1111/cbdd.13309.
    [27]
    LIU YY, CHANG BM, CHANG HC. Nanodiamond-enabled biomedical imaging[J]. Nanomedicine (Lond), 2020, 15(16): 1599-1616. DOI: 10.2217/nnm-2020-0091.
    [28]
    FARRA R, GRASSI M, GRASSI G, et al. Therapeutic potential of small interfering RNAs/micro interfering RNA in hepatocellular carcinoma[J]. World J Gastroenterol, 2015, 21(30): 8994-9001. DOI: 10.3748/wjg.v21.i30.8994.
    [29]
    XU J, GU M, HOOI L, et al. Enhanced penetrative siRNA delivery by a nanodiamond drug delivery platform against hepatocellular carcinoma 3D models[J]. Nanoscale, 2021, 13(38): 16131-16145. DOI: 10.1039/d1nr03502a.
    [30]
    SHAO YM, ZHANG Y, YIN X. et al. Value of Sal-like 4 in the diagnosis and treatment of primary liver cancer[J]. J Clin Hepatol, 2019, 35(10): 2320-2323. DOI: 10.3969/j.issn.1001-5256.2019.10.041.

    邵玥明, 张雨, 殷鑫, 等. SALL4在原发性肝癌诊治中的价值[J]. 临床肝胆病杂志, 2019, 35(10): 2320-2323. DOI: 10.3969/j.issn.1001-5256.2019.10.041.
    [31]
    MOHANTY A, UTHAMAN S, PARK IK. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy[J]. Molecules, 2020, 25(19): 4377. DOI: 10.3390/molecules25194377.
    [32]
    ZHANG J, HU J, CHAN HF, et al. iRGD decorated lipid-polymer hybrid nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance anti-hepatocellular carcinoma efficacy[J]. Nanomedicine, 2016, 12(5): 1303-1311. DOI: 10.1016/j.nano.2016.01.017.
    [33]
    GILIOPOULOS D, ZAMBOULIS A, GIANNAKOUDAKIS D, et al. Polymer/Metal Organic Framework (MOF) nanocomposites for biomedical applications[J]. Molecules, 2020, 25(1): 185. DOI: 10.3390/molecules25010185.
    [34]
    FYTORY M, ARAFA KK, EL ROUBY W, et al. Dual-ligated metal organic framework as novel multifunctional nanovehicle for targeted drug delivery for hepatic cancer treatment[J]. Sci Rep, 2021, 11(1): 19808. DOI: 10.1038/s41598-021-99407-5.
    [35]
    CHEN L, HONG W, REN W, et al. Recent progress in targeted delivery vectors based on biomimetic nanoparticles[J]. Signal Transduct Target Ther, 2021, 6(1): 225. DOI: 10.1038/s41392-021-00631-2.
    [36]
    XIA Q, ZHANG Y, LI Z, et al. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application[J]. Acta Pharm Sin B, 2019, 9(4): 675-689. DOI: 10.1016/j.apsb.2019.01.011.
    [37]
    KONG D, JIANG T, LIU J, et al. Chemoembolizing hepatocellular carcinoma with microsphere cored with arsenic trioxide microcrystal[J]. Drug Deliv, 2020, 27(1): 1729-1740. DOI: 10.1080/10717544.2020.1856219.
    [38]
    LIAN Y, WANG X, GUO P, et al. Erythrocyte membrane-coated arsenic trioxide-loaded sodium alginate nanoparticles for tumor therapy[J]. Pharmaceutics, 2019, 12(1): 21. DOI: 10.3390/pharmaceutics12010021.
    [39]
    JAILLON S, PONZETTA A, DI MITRI D, et al. Neutrophil diversity and plasticity in tumour progression and therapy[J]. Nat Rev Cancer, 2020, 20(9): 485-503. DOI: 10.1038/s41568-020-0281-y.
    [40]
    ZHANG Z, LI D, CAO Y, et al. Biodegradable Hypocrellin B nanoparticles coated with neutrophil membranes for hepatocellular carcinoma photodynamics therapy effectively via JUNB/ROS signaling[J]. Int Immunopharmacol, 2021, 99: 107624. DOI: 10.1016/j.intimp.2021.107624.
    [41]
    HUANG AC, POSTOW MA, ORLOWSKI RJ, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response[J]. Nature, 2017, 545(7652): 60-65. DOI: 10.1038/nature22079.
    [42]
    SHEN N, WU J, YANG C, et al. Combretastatin A4 nanoparticles combined with hypoxia-sensitive imiquimod: a new paradigm for the modulation of host immunological responses during cancer treatment[J]. Nano Lett, 2019, 19(11): 8021-8031. DOI: 10.1021/acs.nanolett.9b03214.
    [43]
    VORON T, COLUSSI O, MARCHETEAU E, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors[J]. J Exp Med, 2015, 212(2): 139-148. DOI: 10.1084/jem.20140559.
    [44]
    BAO X, SHEN N, LOU Y, et al. Enhanced anti-PD-1 therapy in hepatocellular carcinoma by tumor vascular disruption and normalization dependent on combretastatin A4 nanoparticles and DC101[J]. Theranostics, 2021, 11(12): 5955-5969. DOI: 10.7150/thno.58164.
    [45]
    LI H, SHI S, WU M, et al. iRGD peptide-mediated liposomal nanoparticles with photoacoustic/ultrasound dual-modality imaging for precision theranostics against hepatocellular carcinoma[J]. Int J Nanomedicine, 2021, 16: 6455-6475. DOI: 10.2147/IJN.S325891.
    [46]
    LI S, YIN G, PU X, et al. A novel tumor-targeted thermosensitive liposomal cerasome used for thermally controlled drug release[J]. Int J Pharm, 2019, 570: 118660. DOI: 10.1016/j.ijpharm.2019.118660.
    [47]
    LYON PC, GRAY MD, MANNARIS C, et al. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): a single-centre, open-label, phase 1 trial[J]. Lancet Oncol, 2018, 19(8): 1027-1039. DOI: 10.1016/S1470-2045(18)30332-2.
    [48]
    HASHIMOTO A, SARKER D, REEBYE V, et al. Upregulation of C/EBPα inhibits suppressive activity of myeloid cells and potentiates antitumor response in mice and patients with cancer[J]. Clin Cancer Res, 2021, 27(21): 5961-5978. DOI: 10.1158/1078-0432.CCR-21-0986.
    [49]
    SARKER D, PLUMMER R, MEYER T, et al. MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-α, in patients with advanced liver cancer: a first-in-human, multicenter, open-label, phase I trial[J]. Clin Cancer Res, 2020, 26(15): 3936-3946. DOI: 10.1158/1078-0432.CCR-20-0414.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (832) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return