中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 9
Sep.  2022
Turn off MathJax
Article Contents

Efficacy and safety of programmed death-1/programmed death-ligand 1 inhibitors in treatment of hepatitis B virus-associated hepatocellular carcinoma

DOI: 10.3969/j.issn.1001-5256.2022.09.041
Research funding:

The National Science and Technology Major Project for Infectious Diseases (10302201-004-009);

The National Science and Technology Major Project for Infectious Diseases (2017ZX10203202-003);

National Science and Technology Major Special Project for New Drug Development (2018ZX09201016);

Beijing Municipal Science and Technology Commission of Major Projects (D171100003117005);

Beijing Municipal Science and Technology Commission of Major Projects (D161100002716002);

Beijing Municipal Science and Technology Commission of Major Projects (D161100002716003)

More Information
  • Corresponding author: XU Xiaoyuan, xiaoyuanxu6@163.com(ORCID: 0000-0002-1759-4330)
  • Received Date: 2022-02-07
  • Accepted Date: 2022-04-06
  • Published Date: 2022-09-20
  • Combined immunotherapy for hepatocellular carcinoma (HCC) based on immune checkpoint inhibitors (ICIs), especially programmed death receptor-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors, has achieved a remarkable clinical effect in clinical research and practice. Hepatitis B virus (HBV) infection is considered a major risk factor in the process of HCC. Studies are being conducted to investigate the efficacy and safety of PD-1/PD-L1 ICIs used alone or in combination in the treatment of patients with HBV-associated HCC, and some studies have shown that the patients with HBV-associated HCC receiving PD-1/PD-L1 inhibitors have achieved a similar treatment outcome to those without HBV infection; however, no consensus has been reached on the safety issues related to HBV activation. This article reviews the clinical trials of PD-1/PD-L1 blockade immunotherapy for HCC, so as to clarify the safety and efficacy of this new treatment regimen in the particular circumstances of HBV infection.

     

  • loading
  • [1]
    BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
    [2]
    XIE Y. Hepatitis B virus-associated hepatocellular carcinoma[J]. Adv Exp Med Biol, 2017, 1018: 11-21. DOI: 10.1007/978-981-10-5765-6_2.
    [3]
    NISHIJIMA TF, SHACHAR SS, NYROP KA, et al. Safety and tolerability of PD-1/PD-L1 inhibitors compared with chemotherapy in patients with advanced cancer: A meta-analysis[J]. Oncologist, 2017, 22(4): 470-479. DOI: 10.1634/theoncologist.2016-0419.
    [4]
    XU J, SHEN J, GU S, et al. Camrelizumab in combination with apatinib in patients with advanced hepatocellular carcinoma (RESCUE): A Nonrandomized, Open-label, Phase Ⅱ Trial[J]. Clin Cancer Res, 2021, 27(4): 1003-1011. DOI: 10.1158/1078-0432.CCR-20-2571.
    [5]
    FINN RS, IKEDA M, ZHU AX, et al. Phase Ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma[J]. J Clin Oncol, 2020, 38(26): 2960-2970. DOI: 10.1200/JCO.20.00808.
    [6]
    EL-SERAG HB. Epidemiology of viral hepatitis and hepatocellular carcinoma[J]. Gastroenterology, 2012, 142(6): 1264-1273. DOI: 10.1053/j.gastro.2011.12.061.
    [7]
    BOUSSIOTIS VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway[J]. N Engl J Med, 2016, 375(18): 1767-1778. DOI: 10.1056/NEJMra1514296.
    [8]
    FRANKLIN C, LIVINGSTONE E, ROESCH A, et al. Immunotherapy in melanoma: Recent advances and future directions[J]. Eur J Surg Oncol, 2017, 43(3): 604-611. DOI: 10.1016/j.ejso.2016.07.145.
    [9]
    LIU J, ZHONG Y, PENG S, et al. Efficacy and safety of PD1/PDL1 blockades versus docetaxel in patients with pretreated advanced non-small-cell lung cancer: a meta-analysis[J]. Onco Targets Ther, 2018, 11: 8623-8632. DOI: 10.2147/OTT.S181413.
    [10]
    POWLES T, EDER JP, FINE GD, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer[J]. Nature, 2014, 515(7528): 558-562. DOI: 10.1038/nature13904.
    [11]
    ANSELL SM, LESOKHIN AM, BORRELLO I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma[J]. N Engl J Med, 2015, 372(4): 311-319. DOI: 10.1056/NEJMoa1411087.
    [12]
    BERTOLETTI A, LE BERT N. Immunotherapy for chronic hepatitis B virus infection[J]. Gut Liver, 2018, 12(5): 497-507. DOI: 10.5009/gnl17233.
    [13]
    NEBBIA G, PEPPA D, SCHURICH A, et al. Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection[J]. PLoS One, 2012, 7(10): e47648. DOI: 10.1371/journal.pone.0047648.
    [14]
    WU W, SHI Y, LI S, et al. Blockade of Tim-3 signaling restores the virus-specific CD8+ T-cell response in patients with chronic hepatitis B[J]. Eur J Immunol, 2012, 42(5): 1180-1191. DOI: 10.1002/eji.201141852.
    [15]
    ISOGAWA M, FURUICHI Y, CHISARI FV. Oscillating CD8(+) T cell effector functions after antigen recognition in the liver[J]. Immunity, 2005, 23(1): 53-63. DOI: 10.1016/j.immuni.2005.05.005.
    [16]
    SCHURICH A, KHANNA P, LOPES AR, et al. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B virus infection[J]. Hepatology, 2011, 53(5): 1494-1503. DOI: 10.1002/hep.24249.
    [17]
    MAIER H, ISOGAWA M, FREEMAN GJ, et al. PD-1∶ PD-L1 interactions contribute to the functional suppression of virus-specific CD8+ T lymphocytes in the liver[J]. J Immunol, 2007, 178(5): 2714-2720. DOI: 10.4049/jimmunol.178.5.2714.
    [18]
    BALSITIS S, GALI V, MASON PJ, et al. Safety and efficacy of anti-PD-L1 therapy in the woodchuck model of HBV infection[J]. PLoS One, 2018, 13(2): e0190058. DOI: 10.1371/journal.pone.0190058.
    [19]
    GANE E, VERDON DJ, BROOKS AE, et al. Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: A pilot study[J]. J Hepatol, 2019, 71(5): 900-907. DOI: 10.1016/j.jhep.2019.06.028.
    [20]
    YAU T, HSU C, KIM TY, et al. Nivolumab in advanced hepatocellular carcinoma: Sorafenib-experienced Asian cohort analysis[J]. J Hepatol, 2019, 71(3): 543-552. DOI: 10.1016/j.jhep.2019.05.014.
    [21]
    FERRIS ST, DURAI V, WU R, et al. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity[J]. Nature, 2020, 584(7822): 624-629. DOI: 10.1038/s41586-020-2611-3.
    [22]
    CHEN J, HU X, LI Q, et al. Effectiveness and safety of toripalimab, camrelizumab, and sintilimab in a real-world cohort of hepatitis B virus associated hepatocellular carcinoma patients[J]. Ann Transl Med, 2020, 8(18): 1187. DOI: 10.21037/atm-20-6063.
    [23]
    CESCHI A, NOSEDA R, PALIN K, et al. Immune checkpoint inhibitor-related cytokine release syndrome: Analysis of WHO Global Pharmacovigilance Database[J]. Front Pharmacol, 2020, 11: 557. DOI: 10.3389/fphar.2020.00557.
    [24]
    EL-KHOUEIRY AB, SANGRO B, YAU T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389(10088): 2492-2502. DOI: 10.1016/S0140-6736(17)31046-2.
    [25]
    SUNG PS, JANG JW, LEE J, et al. Real-world outcomes of nivolumab in patients with unresectable hepatocellular carcinoma in an endemic area of hepatitis B virus infection[J]. Front Oncol, 2020, 10: 1043. DOI: 10.3389/fonc.2020.01043.
    [26]
    YAU T, PARK JW, FINN RS, et al. LBA38_PR-CheckMate 459: A randomized, multi-center phase Ⅲ study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC) [J]. Ann Oncol, 2019, 30: ⅴ874-ⅴ875. DOI: 10.1093/annonc/mdz394.029.
    [27]
    ZHU AX, FINN RS, EDELINE J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial[J]. Lancet Oncol, 2018, 19(7): 940-952. DOI: 10.1016/S1470-2045(18)30351-6.
    [28]
    KUDO M, LIM HY, CHENG AL, et al. Pembrolizumab as second-line therapy for advanced hepatocellular carcinoma: A subgroup analysis of asian patients in the phase 3 KEYNOTE-240 trial[J]. Liver Cancer, 2021, 10(3): 275-284. DOI: 10.1159/000515553.
    [29]
    QIN S, REN Z, MENG Z, et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial[J]. Lancet Oncol, 2020, 21(4): 571-580. DOI: 10.1016/S1470-2045(20)30011-5.
    [30]
    LEE DW, CHO EJ, LEE JH, et al. Phase Ⅱ study of avelumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib[J]. Clin Cancer Res, 2021, 27(3): 713-718. DOI: 10.1158/1078-0432.CCR-20-3094.
    [31]
    WAINBERG ZA, SEGAL NH, JAEGER D, et al. Safety and clinical activity of durvalumab monotherapy in patients with hepatocellular carcinoma (HCC)[J]. J Clin Oncol, 2017, 35(15_suppl): 4071.
    [32]
    HUTCHINSON L. Targeted therapies: Lenvatinib SELECTs survival benefit[J]. Nat Rev Endocrinol, 2017, 13(9): 500. DOI: 10.1038/nrendo.2017.96.
    [33]
    KATO Y, TABATA K, KIMURA T, et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway[J]. PLoS One, 2019, 14(2): e0212513. DOI: 10.1371/journal.pone.0212513.
    [34]
    FINN RS, QIN S, IKEDA M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma[J]. N Engl J Med, 2020, 382(20): 1894-1905. DOI: 10.1056/NEJMoa1915745.
    [35]
    QIN S, REN Z, FENG YH, et al. Atezolizumab plus bevacizumab versus sorafenib in the chinese subpopulation with unresectable hepatocellular carcinoma: Phase 3 Randomized, Open-Label IMbrave150 Study[J]. Liver Cancer, 2021, 10(4): 296-308. DOI: 10.1159/000513486.
    [36]
    YAU T, KANG YK, KIM TY, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: The CheckMate 040 Randomized Clinical Trial[J]. JAMA Oncol, 2020, 6(11): e204564. DOI: 10.1001/jamaoncol.2020.4564.
    [37]
    QIN S, CHEN Z, LIU Y, et al. A phase Ⅱ study of anti-PD-1 antibody camrelizumab plus FOLFOX4 or GEMOX systemic chemotherapy as first-line therapy for advanced hepatocellular carcinoma or biliary tract cancer[J]. J Clin Oncol, 2019, 37(15_suppl): 4074.
    [38]
    SCHNEIDER BJ, NAIDOO J, SANTOMASSO BD, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update[J]. J Clin Oncol, 2021, 39(36): 4073-4126. DOI: 10.1200/JCO.21.01440.
    [39]
    LINARDOU H, GOGAS H. Toxicity management of immunotherapy for patients with metastatic melanoma[J]. Ann Transl Med, 2016, 4(14): 272. DOI: 10.21037/atm.2016.07.10.
    [40]
    HAANEN J, CARBONNEL F, ROBERT C, et al. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2017, 28(suppl_4): ⅳ119-ⅳ142. DOI: 10.1093/annonc/mdx225.
    [41]
    RAO Q, LI M, XU W, et al. Clinical benefits of PD-1/PD-L1 inhibitors in advanced hepatocellular carcinoma: a systematic review and meta-analysis[J]. Hepatol Int, 2020, 14(5): 765-775. DOI: 10.1007/s12072-020-10064-8.
    [42]
    WANG W, LIE P, GUO M, et al. Risk of hepatotoxicity in cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis of published data[J]. Int J Cancer, 2017, 141(5): 1018-1028. DOI: 10.1002/ijc.30678.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (471) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return