[1] |
OMURA T, SATO R. A new cytochrome in liver microsomes[J]. J Biol Chem, 1962, 237(4): 1375-1376.
|
[2] |
BACHMANN KA, LEWIS JD. Predicting inhibitory drug-drug interactions and evaluating drug interaction reports using inhibition constants[J]. Ann Pharmacother, 2005, 39(6): 1064-1072. DOI: 10.1345/aph.1E508.
|
[3] |
RENDIC S, GUENGERICH FP. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals[J]. Chem Res Toxicol, 2015, 28(1): 38-42. DOI: 10.1021/tx500444e.
|
[4] |
AKIYAMA S, SAKU N, MIYATA S, et al. Drug metabolic activity is a critical cell-intrinsic determinant for selection of hepatocytes during long-term culture[J]. Stem Cell Res Ther, 2022, 13(1): 104. DOI: 10.1186/s13287-022-02776-5.
|
[5] |
ALMAZROO OA, MIAH MK, VENKATARAMANAN R. Drug metabolism in the liver[J]. Clin Liver Dis, 2017, 21(1): 1-20. DOI: 10.1016/j.cld.2016.08.001.
|
[6] |
ZHAO M, MA J, LI M, et al. Cytochrome P450 enzymes and drug metabolism in humans[J]. Int J Mol Sci, 2021, 22(23): 12808. DOI: 10.3390/ijms222312808.
|
[7] |
TRENAMAN SC, BOWLES SK, ANDREW MK, et al. The role of sex, age and genetic polymorphisms of CYP enzymes on the pharmacokinetics of anticholinergic drugs[J]. Pharmacol Res Perspect, 2021, 9(3): e00775. DOI: 10.1002/prp2.775.
|
[8] |
STEYN SJ, VARMA M. Cytochrome-P450-mediated drug-drug interactions of substrate drugs: Assessing clinical risk based on molecular properties and an extended clearance classification system[J]. Mol Pharm, 2020, 17(8): 3024-3032. DOI: 10.1021/acs.molpharmaceut.0c00444.
|
[9] |
KATO H. Computational prediction of cytochrome P450 inhibition and induction[J]. Drug Metab Pharmacokinet, 2020, 35(1): 30-44. DOI: 10.1016/j.dmpk.2019.11.006.
|
[10] |
ALBERTOLLE ME, PHAN T, POZZI A, et al. Sulfenylation of human liver and kidney microsomal cytochromes P450 and other drug-metabolizing enzymes as a response to redox alteration[J]. Mol Cell Proteomics, 2018, 17(5): 889-900. DOI: 10.1074/mcp.RA117.000382.
|
[11] |
SONG Y, LI C, LIU G, et al. Drug-metabolizing cytochrome P450 enzymes have multifarious influences on treatment outcomes[J]. Clin Pharmacokinet, 2021, 60(5): 585-601. DOI: 10.1007/s40262-021-01001-5.
|
[12] |
GASTELUM G, JIANG W, WANG L, et al. Polycyclic aromatic hydrocarbon-induced pulmonary carcinogenesis in cytochrome P450 (CYP)1A1- and 1A2-null mice: Roles of CYP1A1 and CYP1A2[J]. Toxicol Sci, 2020, 177(2): 347-361. DOI: 10.1093/toxsci/kfaa107.
|
[13] |
ZANGER UM, SCHWAB M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation[J]. Pharmacol Ther, 2013, 138(1): 103-141. DOI: 10.1016/j.pharmthera.2012.12.007.
|
[14] |
MARCOS-VADILLO E, CARRASCAL-LASO L, RAMOS-GALLEGO I, et al. Case report: Pharmacogenetics applied to precision psychiatry could explain the outcome of a patient with a new CYP2D6 genotype[J]. Front Psychiatry, 2021, 12: 830608. DOI: 10.3389/fpsyt.2021.830608.
|
[15] |
ZHANG HF, WANG HH, GAO N, et al. Physiological content and intrinsic activities of 10 cytochrome P450 isoforms in human normal liver microsomes[J]. J Pharmacol Exp Ther, 2016, 358(1): 83-93. DOI: 10.1124/jpet.116.233635.
|
[16] |
PALMER CN, COATES PJ, DAVIES SE, et al. Localization of cytochrome P-450 gene expression in normal and diseased human liver by in situ hybridization of wax-embedded archival material[J]. Hepatology, 1992, 16(3): 682-687. DOI: 10.1002/hep.1840160311.
|
[17] |
RODRÍGUEZ-ANTONA C, DONATO MT, PAREJA E, et al. Cytochrome P-450 mRNA expression in human liver and its relationship with enzyme activity[J]. Arch Biochem Biophys, 2001, 393(2): 308-315. DOI: 10.1006/abbi.2001.2499.
|
[18] |
YANG X, ZHANG B, MOLONY C, et al. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver[J]. Genome Res, 2010, 20(8): 1020-1036. DOI: 10.1101/gr.103341.109.
|
[19] |
LIU J, LU YF, CORTON JC, et al. Expression of cytochrome P450 isozyme transcripts and activities in human livers[J]. Xenobiotica, 2021, 51(3): 279-286. DOI: 10.1080/00498254.2020.1867929.
|
[20] |
FANNI D, PINNA F, GEROSA C, et al. Anatomical distribution and expression of CYP in humans: Neuropharmacological implications[J]. Drug Dev Res, 2021, 82(5): 628-667. DOI: 10.1002/ddr.21778.
|
[21] |
ZHANG HF, ZHU LL, YANG XB, et al. Variation in the expression of cytochrome P450-related miRNAs and transcriptional factors in human livers: Correlation with cytochrome P450 gene phenotypes[J]. Toxicol Appl Pharmacol, 2021, 412: 115389. DOI: 10.1016/j.taap.2020.115389.
|
[22] |
STIPP MC, ACCO A. Involvement of cytochrome P450 enzymes in inflammation and cancer: a review[J]. Cancer Chemother Pharmacol, 2021, 87(3): 295-309. DOI: 10.1007/s00280-020-04181-2.
|
[23] |
LEONI S, TOVOLI F, NAPOLI L, et al. Current guidelines for the management of non-alcoholic fatty liver disease: A systematic review with comparative analysis[J]. World J Gastroenterol, 2018, 24(30): 3361-3373. DOI: 10.3748/wjg.v24.i30.3361.
|
[24] |
JAMWAL R, BARLOCK BJ. Nonalcoholic fatty liver disease (NAFLD) and hepatic cytochrome P450 (CYP) enzymes[J]. Pharmaceuticals (Basel), 2020, 13(9): 222. DOI: 10.3390/ph13090222.
|
[25] |
STEPHENSON K, KENNEDY L, HARGROVE L, et al. Updates on dietary models of nonalcoholic fatty liver disease: Current studies and insights[J]. Gene Expr, 2018, 18(1): 5-17. DOI: 10.3727/105221617X15093707969658.
|
[26] |
ANAVI S, MADAR Z, TIROSH O. Non-alcoholic fatty liver disease, to struggle with the strangle: Oxygen availability in fatty livers[J]. Redox Biol, 2017, 13: 386-392. DOI: 10.1016/j.redox.2017.06.008.
|
[27] |
KROGSTAD V, PERIC A, ROBERTSEN I, et al. Correlation of body weight and composition with hepatic activities of cytochrome P450 enzymes[J]. J Pharm Sci, 2021, 110(1): 432-437. DOI: 10.1016/j.xphs.2020.10.027.
|
[28] |
WOOLSEY SJ, MANSELL SE, KIM RB, et al. CYP3A activity and expression in nonalcoholic fatty liver disease[J]. Drug Metab Dispos, 2015, 43(10): 1484-1490. DOI: 10.1124/dmd.115.065979.
|
[29] |
OHASHI K, PIMIENTA M, SEKI E. Alcoholic liver disease: A current molecular and clinical perspective[J]. Liver Res, 2018, 2(4): 161-172. DOI: 10.1016/j.livres.2018.11.002.
|
[30] |
HARTMANN P, HOCHRATH K, HORVATH A, et al. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice[J]. Hepatology, 2018, 67(6): 2150-2166. DOI: 10.1002/hep.29676.
|
[31] |
HYUN J, HAN J, LEE C, et al. Pathophysiological aspects of alcohol metabolism in the liver[J]. Int J Mol Sci, 2021, 22(11): 5717. DOI: 10.3390/ijms22115717.
|
[32] |
LIEBER CS. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis[J]. Alcohol, 2004, 34(1): 9-19. DOI: 10.1016/j.alcohol.2004.07.008.
|
[33] |
LU Y, ZHUGE J, WANG X, et al. Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice[J]. Hepatology, 2008, 47(5): 1483-1494. DOI: 10.1002/hep.22222.
|
[34] |
LU Y, WU D, WANG X, et al. Chronic alcohol-induced liver injury and oxidant stress are decreased in cytochrome P4502E1 knockout mice and restored in humanized cytochrome P4502E1 knock-in mice[J]. Free Radic Biol Med, 2010, 49(9): 1406-1416. DOI: 10.1016/j.freeradbiomed.2010.07.026.
|
[35] |
LU Y, CEDERBAUM AI. Cytochrome P450s and alcoholic liver disease[J]. Curr Pharm Des, 2018, 24(14): 1502-1517. DOI: 10.2174/1381612824666180410091511.
|
[36] |
CHO YE, KIM DK, SEO W, et al. Fructose promotes leaky gut, endotoxemia, and liver fibrosis through ethanol-inducible cytochrome P450-2E1-mediated oxidative and nitrative stress[J]. Hepatology, 2021, 73(6): 2180-2195. DOI: 10.1002/hep.30652.
|
[37] |
WELTMAN MD, FARRELL GC, HALL P, et al. Hepatic cytochrome P450 2E1 is increased in patients with nonalcoholic steatohepatitis[J]. Hepatology, 1998, 27(1): 128-133. DOI: 10.1002/hep.510270121.
|
[38] |
HONG F, SI C, GAO P, et al. The role of CYP2A5 in liver injury and fibrosis: chemical-specific difference[J]. Naunyn Schmiedebergs Arch Pharmacol, 2016, 389(1): 33-43. DOI: 10.1007/s00210-015-1172-8.
|
[39] |
MUHSAIN SN, LANG MA, ABU-BAKAR A. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress[J]. Toxicol Appl Pharmacol, 2015, 282(1): 77-89. DOI: 10.1016/j.taap.2014.11.010.
|
[40] |
ELBEKAI RH, KORASHY HM, EL-KADI AO. The effect of liver cirrhosis on the regulation and expression of drug metabolizing enzymes[J]. Curr Drug Metab, 2004, 5(2): 157-167. DOI: 10.2174/1389200043489054.
|
[41] |
VAVILIN VA, NEPOMNYASHCHIKH DL, SHCHEPOTINA EG, et al. Cytochrome P450 4F2 polymorphism in patients with liver cirrhosis[J]. Bull Exp Biol Med, 2013, 156(2): 181-184. DOI: 10.1007/s10517-013-2305-z.
|
[42] |
XIE Y, WANG G, WANG H, et al. Cytochrome P450 dysregulations in thioacetamide-induced liver cirrhosis in rats and the counteracting effects of hepatoprotective agents[J]. Drug Metab Dispos, 2012, 40(4): 796-802. DOI: 10.1124/dmd.111.043539.
|
[43] |
NEPOMNYASHCHIKH DL, VAVILIN VA, AIDAGULOVA SV, et al. Cytochrome P450 2D6 polymorphism is a molecular genetic marker of liver cirrhosis progression[J]. Bull Exp Biol Med, 2012, 152(5): 633-636. DOI: 10.1007/s10517-012-1595-x.
|
[44] |
SIEGEL RL, MILLER KD, FUCHS HE, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
|
[45] |
NEKVINDOVA J, MRKVICOVA A, ZUBANOVA V, et al. Hepatocellular carcinoma: Gene expression profiling and regulation of xenobiotic-metabolizing cytochromes P450[J]. Biochem Pharmacol, 2020, 177: 113912. DOI: 10.1016/j.bcp.2020.113912.
|
[46] |
JIANG T, ZHU AS, YANG CQ, et al. Cytochrome P450 2A6 is associated with macrophage polarization and is a potential biomarker for hepatocellular carcinoma[J]. FEBS Open Bio, 2021, 11(3): 670-683. DOI: 10.1002/2211-5463.13089.
|
[47] |
CHEN L, BAO Y, PIEKOS SC, et al. A transcriptional regulatory network containing nuclear receptors and long noncoding RNAs controls basal and drug-induced expression of cytochrome P450s in HepaRG cells[J]. Mol Pharmacol, 2018, 94(1): 749-759. DOI: 10.1124/mol.118.112235.
|
[48] |
LI X, LI S, WANG B, et al. Borneol influences the pharmacokinetics of florfenicol through regulation of cytochrome P450 1A2 (CYP1A2), CYP2C11, CYP3A1, and multidrug resistance 1 (MDR1) mRNA expression levels in rats[J]. J Vet Med Sci, 2021, 83(8): 1338-1344. DOI: 10.1292/jvms.20-0641.
|
[49] |
QI Y, TOYOOKA T, HORIGUCHI H, et al. 2-mercaptobenzothiazole generates γ-H2AX via CYP2E1-dependent production of reactive oxygen species in urothelial cells[J]. J Biochem Mol Toxicol, 2022. DOI: 10.1002/jbt.23043. [Online ahead of print]
|