[1] |
LI X, WANG Y, YANG H, et al. Liver and hepatocyte transplantation: what can pigs contribute?[J]. Front Immunol, 2021, 12: 802692. DOI: 10.3389/fimmu.2021.802692.
|
[2] |
QIU J, ZHAO CH. Research progress of liver xenotransplantation[J]. J Hepatobiliary Surg, 2022, 30(2): 154-156. DOI: 10.3969/j.issn.1006-4761.2022.02.019.
邱健, 赵红川. 异种肝移植研究进展[J]. 肝胆外科杂志, 2022, 30(2): 154-156. DOI: 10.3969/j.issn.1006-4761.2022.02.019.
|
[3] |
CALNE RY, WHITE HJ, HERBERTSON BM, et al. Pig-to-baboon liver xenografts[J]. Lancet, 1968, 1(7553): 1176-1178. DOI: 10.1016/s0140-6736(68)91869-2.
|
[4] |
KIM K, SCHUETZ C, ELIAS N, et al. Up to 9-day survival and control of thrombocytopenia following alpha1,3-galactosyl transferase knockout swine liver xenotransplantation in baboons[J]. Xenotransplantation, 2012, 19(4): 256-264. DOI: 10.1111/j.1399-3089.2012.00717.x.
|
[5] |
LAMM V, EKSER B, VAGEFI PA, et al. Bridging to allotransplantation-is pig liver xenotransplantation the best option?[J]. Transplantation, 2022, 106(1): 26-36. DOI: 10.1097/TP.0000000000003722.
|
[6] |
CALNE RY, DAVIS DR, PENA JR, et al. Hepatic allografts and xenografts in primates[J]. Lancet, 1970, 1(7638): 103-106. DOI: 10.1016/s0140-6736(70)90462-9.
|
[7] |
POWELSON J, COSIMI AB, AUSTEN W Jr, et al. Porcine-to-primate orthotopic liver transplantation[J]. Transplant Proc, 1994, 26(3): 1353-1354.
|
[8] |
LUO Y, KOSANKE S, MIELES L, et al. Comparative histopathology of hepatic allografts and xenografts in the nonhuman primate[J]. Xenotransplantation, 1998, 5(3): 197-206. DOI: 10.1111/j.1399-3089.1998.tb00028.x.
|
[9] |
RAMIREZ P, CHAVEZ R, MAJADO M, et al. Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days[J]. Transplantation, 2000, 70(7): 989-998. DOI: 10.1097/00007890-200010150-00001.
|
[10] |
RAMÍREZ P, MONTOYA MJ, RÍOS A, et al. Prevention of hyperacute rejection in a model of orthotopic liver xenotransplantation from pig to baboon using polytransgenic pig livers (CD55, CD59, and H-transferase)[J]. Transplant Proc, 2005, 37(9): 4103-4106. DOI: 10.1016/j.transproceed.2005.09.186.
|
[11] |
EKSER B, LONG C, ECHEVERRI GJ, et al. Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants: clinical relevance[J]. Am J Transplant, 2010, 10(2): 273-285. DOI: 10.1111/j.1600-6143.2009.02945.x.
|
[12] |
BUTLER JR, PARIS LL, BLANKENSHIP RL, et al. Silencing porcine CMAH and GGTA1 genes significantly reduces xenogeneic consumption of human platelets by porcine livers[J]. Transplantation, 2016, 100(3): 571-576. DOI: 10.1097/TP.0000000000001071.
|
[13] |
CIMENO A, FRENCH BM, POWELL JM, et al. Synthetic liver function is detectable in transgenic porcine livers perfused with human blood[J]. Xenotransplantation, 2018, 25(1): e12361. DOI: 10.1111/xen.12361.
|
[14] |
SYKES M, SACHS DH. Transplanting organs from pigs to humans[J]. Sci Immunol, 2019, 4(41): eaau6298. DOI: 10.1126/sciimmunol.aau6298.
|
[15] |
LI P, WALSH JR, LOPEZ K, et al. Genetic engineering of porcine endothelial cell lines for evaluation of human-to-pig xenoreactive immune responses[J]. Sci Rep, 2021, 11(1): 13131. DOI: 10.1038/s41598-021-92543-y.
|
[16] |
MAEDA A, KOGATA S, TOYAMA C, et al. The Innate Cellular Immune Response in Xenotransplantation[J]. Front Immunol, 2022, 13: 858604. DOI: 10.3389/fimmu.2022.858604.
|
[17] |
BARCLAY AN, BROWN MH. The SIRP family of receptors and immune regulation[J]. Nat Rev Immunol, 2006, 6(6): 457-464. DOI: 10.1038/nri1859.
|
[18] |
ZENG GM, JIANG YD, FENG C, et al. Generation and Expression Analysis of Human (Homo sapiens) CD47 Transgenic Bama Miniature Pig (Sus scrofa)[J]. J Agricult Biotech, 2016, 24(8): 1251-1258. DOI: 10.3969/j.issn.1674-7968.2016.08.017.
曾国敏, 蒋应弟, 冯冲, 等. 表达人CD47基因的巴马小型猪创建及其表达分析[J]. 农业生物技术学报, 2016, 24(8): 1251-1258. DOI: 10.3969/j.issn.1674-7968.2016.08.017.
|
[19] |
ZHANG Z, LI X, ZHANG H, et al. Cytokine profiles in Tibetan macaques following α-1,3-galactosyltransferase-knockout pig liver xenotransplantation[J]. Xenotransplantation, 2017, 24(5): e12321. DOI: 10.1111/xen.12321.
|
[20] |
PARIS LL, CHIHARA RK, REYES LM, et al. ASGR1 expressed by porcine enriched liver sinusoidal endothelial cells mediates human platelet phagocytosis in vitro[J]. Xenotransplantation, 2011, 18(4): 245-251. DOI: 10.1111/j.1399-3089.2011.00639.x.
|
[21] |
PARIS LL, ESTRADA JL, LI P, et al. Reduced human platelet uptake by pig livers deficient in the asialoglycoprotein receptor 1 protein[J]. Xenotransplantation, 2015, 22(3): 203-210. DOI: 10.1111/xen.12164.
|
[22] |
LI XR, FENG C, LONG C, et al. Generation of Asialoglycoprotein Receptor 1 (ASGR1) Gene Knockout Pigs (Sus scrofa) via CRISPR/Cas9[J]. J Agricult Biotech, 2016, 24(8): 1243-1250. DOI: 10.3969/j.issn.1674-7968.2016.08.016.
李西睿, 冯冲, 龙川, 等. CRISPR/Cas9介导的ASGR1基因敲除猪制备[J]. 农业生物技术学报, 2016, 24(8): 1243-1250. DOI: 10.3969/j.issn.1674-7968.2016.08.016.
|
[23] |
AHRENS HE, PETERSEN B, HERRMANN D, et al. siRNA mediated knockdown of tissue factor expression in pigs for xenotransplantation[J]. Am J Transplant, 2015, 15(5): 1407-1414. DOI: 10.1111/ajt.13120.
|
[24] |
CROSS-NAJAFI AA, LOPEZ K, ISIDAN A, et al. Current barriers to clinical liver xenotransplantation[J]. Front Immunol, 2022, 13: 827535. DOI: 10.3389/fimmu.2022.827535.
|
[25] |
PENG Q, YEH H, WEI L, et al. Mechanisms of xenogeneic baboon platelet aggregation and phagocytosis by porcine liver sinusoidal endothelial cells[J]. PLoS One, 2012, 7(10): e47273. DOI: 10.1371/journal.pone.0047273.
|
[26] |
PETERSEN B, RAMACKERS W, TIEDE A, et al. Pigs transgenic for human thrombomodulin have elevated production of activated protein C[J]. Xenotransplantation, 2009, 16(6): 486-495. DOI: 10.1111/j.1399-3089.2009.00537.x.
|
[27] |
KWON DJ, KIM DH, HWANG IS, et al. Generation of α-1,3-galactosyltransferase knocked-out transgenic cloned pigs with knocked-in five human genes[J]. Transgenic Res, 2017, 26(1): 153-163. DOI: 10.1007/s11248-016-9979-8.
|
[28] |
PAN D, LIU T, LEI T, et al. Progress in multiple genetically modified minipigs for xenotransplantation in China[J]. Xenotransplantation, 2019, 26(1): e12492. DOI: 10.1111/xen.12492.
|
[29] |
CARVALHO-OLIVEIRA M, VALDIVIA E, BLASCZYK R, et al. Immunogenetics of xenotransplantation[J]. Int J Immunogenet, 2021, 48(2): 120-134. DOI: 10.1111/iji.12526.
|
[30] |
SHAH JA, PATEL MS, ELIAS N, et al. Prolonged survival following pig-to-primate liver xenotransplantation utilizing exogenous coagulation factors and costimulation blockade[J]. Am J Transplant, 2017, 17(8): 2178-2185. DOI: 10.1111/ajt.14341.
|
[31] |
COOPER D, PIERSON RN 3rd, HERING BJ, et al. Regulation of clinical xenotransplantation-time for a reappraisal[J]. Transplantation, 2017, 101(8): 1766-1769. DOI: 10.1097/TP.0000000000001683.
|
[32] |
KOBAYASHI T, YAMAGUCHI T, HAMANAKA S, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells[J]. Cell, 2010, 142(5): 787-799. DOI: 10.1016/j.cell.2010.07.039.
|
[33] |
YAMAGUCHI T, SATO H, KATO-ITOH M, et al. Interspecies organogenesis generates autologous functional islets[J]. Nature, 2017, 542(7640): 191-196. DOI: 10.1038/nature21070.
|
[34] |
WU J, PLATERO-LUENGO A, SAKURAI M, et al. Interspecies chimerism with mammalian pluripotent stem cells[J]. Cell, 2017, 168(3): 473-486. e15. DOI: 10.1016/j.cell.2016.12.036.
|
[35] |
FU R, YU D, REN J, et al. Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs[J]. Protein Cell, 2020, 11(2): 97-107. DOI: 10.1007/s13238-019-00676-8.
|
[36] |
LOVELL-BADGE R, ANTHONY E, BARKER RA, et al. ISSCR guidelines for stem cell research and clinical translation: the 2021 update[J]. Stem Cell Reports, 2021, 16(6): 1398-1408. DOI: 10.1016/j.stemcr.2021.05.012.
|
[37] |
TAN T, WU J, SI C, et al. Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo[J]. Cell, 2021, 184(13): 3589. DOI: 10.1016/j.cell.2021.06.011.
|
[38] |
HUANG J, GUO X, FAN N, et al. RAG1/2 knockout pigs with severe combined immunodeficiency[J]. J Immunol, 2014, 193(3): 1496-1503. DOI: 10.4049/jimmunol.1400915.
|
[39] |
SUZUKI S, IWAMOTO M, SAITO Y, et al. Il2rg gene-targeted severe combined immunodeficiency pigs[J]. Cell Stem Cell, 2012, 10(6): 753-758. DOI: 10.1016/j.stem.2012.04.021.
|
[40] |
GAO M, ZHANG B, HE Y, et al. Efficient generation of an Fah/Rag2 dual-gene knockout porcine cell line using CRISPR/Cas9 and adenovirus[J]. DNA Cell Biol, 2019, 38(4): 314-321. DOI: 10.1089/dna.2018.4493.
|
[41] |
WANG SS, ZHU HW, LU CS, et al. Generation and breeding of FAH gene knockout cloned minipigs[J]. Chin J Comp Med, 2019, 29(5): 29-37. DOI: 10.3969/j.issn.1671-7856.2019.05.005.
王莎莎, 朱辉斌, 卢晟盛, 等. FAH基因敲除克隆小型猪的制备及繁育[J]. 中国比较医学杂志, 2019, 29(5): 29-37. DOI: 10.3969/j.issn.1671-7856.2019.05.005.
|