中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 10
Oct.  2022
Turn off MathJax
Article Contents

The discussion on the Genetically Modified Pigs for the treatment of acute liver failure

DOI: 10.3969/j.issn.1001-5256.2022.10.004
Research funding:

Sichuan Science and Technology Program (Key R & D Project) (2021YFS0008)

More Information
  • Corresponding author: PAN Dengke, pandengke2002@163.com(ORCID: 0000-0002-7994-1465)
  • Received Date: 2020-07-30
  • Accepted Date: 2020-08-31
  • Published Date: 2022-10-20
  • Liver transplants are in huge demand in China, but facing the problem of extreme shortage of donor organs. Xenogeneic (pig) liver transplantation may be a potential way to alleviate the shortage of donors. The liver is a detoxifying organ with synthetic functions, and when genetically modified pigs are used as donors, it faces the dual problem of overcoming immune rejection and resolving physiological function mismatches. Therefore, suppressing the innate immune response can better alleviate the immune rejection of xenotransplantation. In addition, the use of chimeras of humanized cell livers may resolve the problem of physiological function mismatch. Moreover, with the development of gene editing technology, it has become possible to obtain multiple gene edited pigs and chimeras. Therefore, exploring and researching from these two aspects will hopefully solve the current problems of liver xenotransplantation and promote the further development of the field of liver xenotransplantation.

     

  • loading
  • [1]
    LI X, WANG Y, YANG H, et al. Liver and hepatocyte transplantation: what can pigs contribute?[J]. Front Immunol, 2021, 12: 802692. DOI: 10.3389/fimmu.2021.802692.
    [2]
    QIU J, ZHAO CH. Research progress of liver xenotransplantation[J]. J Hepatobiliary Surg, 2022, 30(2): 154-156. DOI: 10.3969/j.issn.1006-4761.2022.02.019.

    邱健, 赵红川. 异种肝移植研究进展[J]. 肝胆外科杂志, 2022, 30(2): 154-156. DOI: 10.3969/j.issn.1006-4761.2022.02.019.
    [3]
    CALNE RY, WHITE HJ, HERBERTSON BM, et al. Pig-to-baboon liver xenografts[J]. Lancet, 1968, 1(7553): 1176-1178. DOI: 10.1016/s0140-6736(68)91869-2.
    [4]
    KIM K, SCHUETZ C, ELIAS N, et al. Up to 9-day survival and control of thrombocytopenia following alpha1,3-galactosyl transferase knockout swine liver xenotransplantation in baboons[J]. Xenotransplantation, 2012, 19(4): 256-264. DOI: 10.1111/j.1399-3089.2012.00717.x.
    [5]
    LAMM V, EKSER B, VAGEFI PA, et al. Bridging to allotransplantation-is pig liver xenotransplantation the best option?[J]. Transplantation, 2022, 106(1): 26-36. DOI: 10.1097/TP.0000000000003722.
    [6]
    CALNE RY, DAVIS DR, PENA JR, et al. Hepatic allografts and xenografts in primates[J]. Lancet, 1970, 1(7638): 103-106. DOI: 10.1016/s0140-6736(70)90462-9.
    [7]
    POWELSON J, COSIMI AB, AUSTEN W Jr, et al. Porcine-to-primate orthotopic liver transplantation[J]. Transplant Proc, 1994, 26(3): 1353-1354.
    [8]
    LUO Y, KOSANKE S, MIELES L, et al. Comparative histopathology of hepatic allografts and xenografts in the nonhuman primate[J]. Xenotransplantation, 1998, 5(3): 197-206. DOI: 10.1111/j.1399-3089.1998.tb00028.x.
    [9]
    RAMIREZ P, CHAVEZ R, MAJADO M, et al. Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days[J]. Transplantation, 2000, 70(7): 989-998. DOI: 10.1097/00007890-200010150-00001.
    [10]
    RAMÍREZ P, MONTOYA MJ, RÍOS A, et al. Prevention of hyperacute rejection in a model of orthotopic liver xenotransplantation from pig to baboon using polytransgenic pig livers (CD55, CD59, and H-transferase)[J]. Transplant Proc, 2005, 37(9): 4103-4106. DOI: 10.1016/j.transproceed.2005.09.186.
    [11]
    EKSER B, LONG C, ECHEVERRI GJ, et al. Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants: clinical relevance[J]. Am J Transplant, 2010, 10(2): 273-285. DOI: 10.1111/j.1600-6143.2009.02945.x.
    [12]
    BUTLER JR, PARIS LL, BLANKENSHIP RL, et al. Silencing porcine CMAH and GGTA1 genes significantly reduces xenogeneic consumption of human platelets by porcine livers[J]. Transplantation, 2016, 100(3): 571-576. DOI: 10.1097/TP.0000000000001071.
    [13]
    CIMENO A, FRENCH BM, POWELL JM, et al. Synthetic liver function is detectable in transgenic porcine livers perfused with human blood[J]. Xenotransplantation, 2018, 25(1): e12361. DOI: 10.1111/xen.12361.
    [14]
    SYKES M, SACHS DH. Transplanting organs from pigs to humans[J]. Sci Immunol, 2019, 4(41): eaau6298. DOI: 10.1126/sciimmunol.aau6298.
    [15]
    LI P, WALSH JR, LOPEZ K, et al. Genetic engineering of porcine endothelial cell lines for evaluation of human-to-pig xenoreactive immune responses[J]. Sci Rep, 2021, 11(1): 13131. DOI: 10.1038/s41598-021-92543-y.
    [16]
    MAEDA A, KOGATA S, TOYAMA C, et al. The Innate Cellular Immune Response in Xenotransplantation[J]. Front Immunol, 2022, 13: 858604. DOI: 10.3389/fimmu.2022.858604.
    [17]
    BARCLAY AN, BROWN MH. The SIRP family of receptors and immune regulation[J]. Nat Rev Immunol, 2006, 6(6): 457-464. DOI: 10.1038/nri1859.
    [18]
    ZENG GM, JIANG YD, FENG C, et al. Generation and Expression Analysis of Human (Homo sapiens) CD47 Transgenic Bama Miniature Pig (Sus scrofa)[J]. J Agricult Biotech, 2016, 24(8): 1251-1258. DOI: 10.3969/j.issn.1674-7968.2016.08.017.

    曾国敏, 蒋应弟, 冯冲, 等. 表达人CD47基因的巴马小型猪创建及其表达分析[J]. 农业生物技术学报, 2016, 24(8): 1251-1258. DOI: 10.3969/j.issn.1674-7968.2016.08.017.
    [19]
    ZHANG Z, LI X, ZHANG H, et al. Cytokine profiles in Tibetan macaques following α-1,3-galactosyltransferase-knockout pig liver xenotransplantation[J]. Xenotransplantation, 2017, 24(5): e12321. DOI: 10.1111/xen.12321.
    [20]
    PARIS LL, CHIHARA RK, REYES LM, et al. ASGR1 expressed by porcine enriched liver sinusoidal endothelial cells mediates human platelet phagocytosis in vitro[J]. Xenotransplantation, 2011, 18(4): 245-251. DOI: 10.1111/j.1399-3089.2011.00639.x.
    [21]
    PARIS LL, ESTRADA JL, LI P, et al. Reduced human platelet uptake by pig livers deficient in the asialoglycoprotein receptor 1 protein[J]. Xenotransplantation, 2015, 22(3): 203-210. DOI: 10.1111/xen.12164.
    [22]
    LI XR, FENG C, LONG C, et al. Generation of Asialoglycoprotein Receptor 1 (ASGR1) Gene Knockout Pigs (Sus scrofa) via CRISPR/Cas9[J]. J Agricult Biotech, 2016, 24(8): 1243-1250. DOI: 10.3969/j.issn.1674-7968.2016.08.016.

    李西睿, 冯冲, 龙川, 等. CRISPR/Cas9介导的ASGR1基因敲除猪制备[J]. 农业生物技术学报, 2016, 24(8): 1243-1250. DOI: 10.3969/j.issn.1674-7968.2016.08.016.
    [23]
    AHRENS HE, PETERSEN B, HERRMANN D, et al. siRNA mediated knockdown of tissue factor expression in pigs for xenotransplantation[J]. Am J Transplant, 2015, 15(5): 1407-1414. DOI: 10.1111/ajt.13120.
    [24]
    CROSS-NAJAFI AA, LOPEZ K, ISIDAN A, et al. Current barriers to clinical liver xenotransplantation[J]. Front Immunol, 2022, 13: 827535. DOI: 10.3389/fimmu.2022.827535.
    [25]
    PENG Q, YEH H, WEI L, et al. Mechanisms of xenogeneic baboon platelet aggregation and phagocytosis by porcine liver sinusoidal endothelial cells[J]. PLoS One, 2012, 7(10): e47273. DOI: 10.1371/journal.pone.0047273.
    [26]
    PETERSEN B, RAMACKERS W, TIEDE A, et al. Pigs transgenic for human thrombomodulin have elevated production of activated protein C[J]. Xenotransplantation, 2009, 16(6): 486-495. DOI: 10.1111/j.1399-3089.2009.00537.x.
    [27]
    KWON DJ, KIM DH, HWANG IS, et al. Generation of α-1,3-galactosyltransferase knocked-out transgenic cloned pigs with knocked-in five human genes[J]. Transgenic Res, 2017, 26(1): 153-163. DOI: 10.1007/s11248-016-9979-8.
    [28]
    PAN D, LIU T, LEI T, et al. Progress in multiple genetically modified minipigs for xenotransplantation in China[J]. Xenotransplantation, 2019, 26(1): e12492. DOI: 10.1111/xen.12492.
    [29]
    CARVALHO-OLIVEIRA M, VALDIVIA E, BLASCZYK R, et al. Immunogenetics of xenotransplantation[J]. Int J Immunogenet, 2021, 48(2): 120-134. DOI: 10.1111/iji.12526.
    [30]
    SHAH JA, PATEL MS, ELIAS N, et al. Prolonged survival following pig-to-primate liver xenotransplantation utilizing exogenous coagulation factors and costimulation blockade[J]. Am J Transplant, 2017, 17(8): 2178-2185. DOI: 10.1111/ajt.14341.
    [31]
    COOPER D, PIERSON RN 3rd, HERING BJ, et al. Regulation of clinical xenotransplantation-time for a reappraisal[J]. Transplantation, 2017, 101(8): 1766-1769. DOI: 10.1097/TP.0000000000001683.
    [32]
    KOBAYASHI T, YAMAGUCHI T, HAMANAKA S, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells[J]. Cell, 2010, 142(5): 787-799. DOI: 10.1016/j.cell.2010.07.039.
    [33]
    YAMAGUCHI T, SATO H, KATO-ITOH M, et al. Interspecies organogenesis generates autologous functional islets[J]. Nature, 2017, 542(7640): 191-196. DOI: 10.1038/nature21070.
    [34]
    WU J, PLATERO-LUENGO A, SAKURAI M, et al. Interspecies chimerism with mammalian pluripotent stem cells[J]. Cell, 2017, 168(3): 473-486. e15. DOI: 10.1016/j.cell.2016.12.036.
    [35]
    FU R, YU D, REN J, et al. Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs[J]. Protein Cell, 2020, 11(2): 97-107. DOI: 10.1007/s13238-019-00676-8.
    [36]
    LOVELL-BADGE R, ANTHONY E, BARKER RA, et al. ISSCR guidelines for stem cell research and clinical translation: the 2021 update[J]. Stem Cell Reports, 2021, 16(6): 1398-1408. DOI: 10.1016/j.stemcr.2021.05.012.
    [37]
    TAN T, WU J, SI C, et al. Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo[J]. Cell, 2021, 184(13): 3589. DOI: 10.1016/j.cell.2021.06.011.
    [38]
    HUANG J, GUO X, FAN N, et al. RAG1/2 knockout pigs with severe combined immunodeficiency[J]. J Immunol, 2014, 193(3): 1496-1503. DOI: 10.4049/jimmunol.1400915.
    [39]
    SUZUKI S, IWAMOTO M, SAITO Y, et al. Il2rg gene-targeted severe combined immunodeficiency pigs[J]. Cell Stem Cell, 2012, 10(6): 753-758. DOI: 10.1016/j.stem.2012.04.021.
    [40]
    GAO M, ZHANG B, HE Y, et al. Efficient generation of an Fah/Rag2 dual-gene knockout porcine cell line using CRISPR/Cas9 and adenovirus[J]. DNA Cell Biol, 2019, 38(4): 314-321. DOI: 10.1089/dna.2018.4493.
    [41]
    WANG SS, ZHU HW, LU CS, et al. Generation and breeding of FAH gene knockout cloned minipigs[J]. Chin J Comp Med, 2019, 29(5): 29-37. DOI: 10.3969/j.issn.1671-7856.2019.05.005.

    王莎莎, 朱辉斌, 卢晟盛, 等. FAH基因敲除克隆小型猪的制备及繁育[J]. 中国比较医学杂志, 2019, 29(5): 29-37. DOI: 10.3969/j.issn.1671-7856.2019.05.005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (502) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return