[1] |
LAZARUS JV, MARK HE, ANSTEE QM, et al. Advancing the global public health agenda for NAFLD: a consensus statement[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(1): 60-78. DOI: 10.1038/s41575-021-00523-4.
|
[2] |
YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.
|
[3] |
ZHOU F, ZHOU J, WANG W, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: A systematic review and meta-analysis[J]. Hepatology, 2019, 70(4): 1119-1133. DOI: 10.1002/hep.30702.
|
[4] |
SHAPIRO WL, NOON SL, SCHWIMMER JB. Recent advances in the epidemiology of nonalcoholic fatty liver disease in children[J]. Pediatr Obes, 2021, 16(11): e12849. DOI: 10.1111/ijpo.12849.
|
[5] |
WANG CE, XU WT, GONG J, et al. Research progress in treatment of nonalcoholic fatty liver disease[J]. Chin J Med Offic, 2022, 50(9): 897-899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.
王彩娥, 许文涛, 宫建, 等. 非酒精性脂肪性肝病治疗研究进展[J]. 临床军医杂志, 2022, 50(9): 897-899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.
|
[6] |
FINKEL T, DENG CX, MOSTOSLAVSKY R. Recent progress in the biology and physiology of sirtuins[J]. Nature, 2009, 460(7255): 587-591. DOI: 10.1038/nature08197.
|
[7] |
HIRSCHEY MD, ZHAO Y. Metabolic regulation by lysine malonylation, succinylation, and glutarylation[J]. Mol Cell Proteomics, 2015, 14(9): 2308-2315. DOI: 10.1074/mcp.R114.046664.
|
[8] |
KUPIS W, PAŁYGA J, TOMAL E, et al. The role of sirtuins in cellular homeostasis[J]. J Physiol Biochem, 2016, 72(3): 371-380. DOI: 10.1007/s13105-016-0492-6.
|
[9] |
CARAFA V, ROTILI D, FORGIONE M, et al. Sirtuin functions and modulation: from chemistry to the clinic[J]. Clin Epigenetics, 2016, 8: 61. DOI: 10.1186/s13148-016-0224-3.
|
[10] |
SANTOS L, ESCANDE C, DENICOLA A. Potential modulation of sirtuins by oxidative stress[J]. Oxid Med Cell Longev, 2016, 2016: 9831825. DOI: 10.1155/2016/9831825.
|
[11] |
AVILKINA V, CHAUVEAU C, GHALI MHENNI O. Sirtuin function and metabolism: Role in pancreas, liver, and adipose tissue and their crosstalk impacting bone homeostasis[J]. Bone, 2022, 154: 116232. DOI: 10.1016/j.bone.2021.116232.
|
[12] |
BUZZETTI E, PINZANI M, TSOCHATZIS EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048. DOI: 10.1016/j.metabol.2015.12.012.
|
[13] |
SCORLETTI E, CARR RM. A new perspective on NAFLD: Focusing on lipid droplets[J]. J Hepatol, 2022, 76(4): 934-945. DOI: 10.1016/j.jhep.2021.11.009.
|
[14] |
ALVES-BEZERRA M, COHEN DE. Triglyceride metabolism in the liver[J]. Compr Physiol, 2017, 8(1): 1-8. DOI: 10.1002/cphy.c170012.
|
[15] |
PURUSHOTHAM A, SCHUG TT, XU Q, et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation[J]. Cell Metab, 2009, 9(4): 327-338. DOI: 10.1016/j.cmet.2009.02.006.
|
[16] |
GOETZMAN ES, BHARATHI SS, ZHANG Y, et al. Impaired mitochondrial medium-chain fatty acid oxidation drives periportal macrovesicular steatosis in sirtuin-5 knockout mice[J]. Sci Rep, 2020, 10(1): 18367. DOI: 10.1038/s41598-020-75615-3.
|
[17] |
LI SW, TAKAHARA T, QUE W, et al. Hydrogen-rich water protects against liver injury in nonalcoholic steatohepatitis through HO-1 enhancement via IL-10 and Sirt 1 signaling[J]. Am J Physiol Gastrointest Liver Physiol, 2021, 320(4): G450-G463. DOI: 10.1152/ajpgi.00158.2020.
|
[18] |
FORTE TM, RYAN RO. Apolipoprotein A5: Extracellular and intracellular roles in triglyceride metabolism[J]. Curr Drug Targets, 2015, 16(12): 1274-1280. DOI: 10.2174/1389450116666150531161138.
|
[19] |
XING D, WANG B, LU H, et al. Sirtuin 3 restores synthesis and secretion of very low-density lipoproteins in cow hepatocytes challenged with nonesterified fatty acids in vitro[J]. Vet Sci, 2021, 8(7): 121. DOI: 10.3390/vetsci8070121.
|
[20] |
ZHU C, HUANG M, KIM HG, et al. SIRT6 controls hepatic lipogenesis by suppressing LXR, ChREBP, and SREBP1[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(12): 166249. DOI: 10.1016/j.bbadis.2021.166249.
|
[21] |
SATHYANARAYAN A, MASHEK MT, MASHEK DG. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism[J]. Cell Rep, 2017, 19(1): 1-9. DOI: 10.1016/j.celrep.2017.03.026.
|
[22] |
DONG Z, XIE X, SUN Y, et al. Paeonol prevents lipid metabolism dysfunction in palmitic acid-induced HepG2 injury through promoting SIRT1-FoxO1-ATG14-dependent autophagy[J]. Eur J Pharmacol, 2020, 880: 173145. DOI: 10.1016/j.ejphar.2020.173145.
|
[23] |
ZHANG T, LIU J, SHEN S, et al. SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes against lipotoxicity[J]. Cell Death Differ, 2020, 27(1): 329-344. DOI: 10.1038/s41418-019-0356-z.
|
[24] |
PETERSEN MC, SHULMAN GI. Mechanisms of insulin action and insulin resistance[J]. Physiol Rev, 2018, 98(4): 2133-2223. DOI: 10.1152/physrev.00063.2017.
|
[25] |
YARIBEYGI H, FARROKHI FR, BUTLER AE, et al. Insulin resistance: Review of the underlying molecular mechanisms[J]. J Cell Physiol, 2019, 234(6): 8152-8161. DOI: 10.1002/jcp.27603.
|
[26] |
WANG A, LI T, AN P, et al. Exendin-4 upregulates adiponectin level in adipocytes via Sirt1/Foxo-1 signaling pathway[J]. PLoS One, 2017, 12(1): e0169469. DOI: 10.1371/journal.pone.0169469.
|
[27] |
JUNG TW, LEE KT, LEE MW, et al. SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150[J]. Biochem Biophys Res Commun, 2012, 422(2): 229-232. DOI: 10.1016/j.bbrc.2012.04.129.
|
[28] |
CAO Y, JIANG X, MA H, et al. SIRT1 and insulin resistance[J]. J Diabetes Complications, 2016, 30(1): 178-183. DOI: 10.1016/j.jdiacomp.2015.08.022.
|
[29] |
WU SY, LIANG J, YANG BC, et al. SIRT1 activation promotes β-Cell regeneration by activating endocrine progenitor cells via AMPK signaling-mediated fatty acid oxidation[J]. Stem Cells, 2019, 37(11): 1416-1428. DOI: 10.1002/stem.3073.
|
[30] |
ZHANG HH, MA XJ, WU LN, et al. Sirtuin-3 (SIRT3) protects pancreatic β-cells from endoplasmic reticulum (ER) stress-induced apoptosis and dysfunction[J]. Mol Cell Biochem, 2016, 420(1-2): 95-106. DOI: 10.1007/s11010-016-2771-5.
|
[31] |
LETO D, SALTIEL AR. Regulation of glucose transport by insulin: traffic control of GLUT4[J]. Nat Rev Mol Cell Biol, 2012, 13(6): 383-396. DOI: 10.1038/nrm3351.
|
[32] |
JEON JY, CHOI SE, HA ES, et al. GLP-1 improves palmitate-induced insulin resistance in human skeletal muscle via SIRT1 activity[J]. Int J Mol Med, 2019, 44(3): 1161-1171. DOI: 10.3892/ijmm.2019.4272.
|
[33] |
MUSSO G, GAMBINO R, CASSADER M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis[J]. Prog Lipid Res, 2013, 52(1): 175-191. DOI: 10.1016/j.plipres.2012.11.002.
|
[34] |
BRESQUE M, CAL K, PÉREZ-TORRADO V, et al. SIRT6 stabilization and cytoplasmic localization in macrophages regulates acute and chronic inflammation in mice[J]. J Biol Chem, 2022, 298(3): 101711. DOI: 10.1016/j.jbc.2022.101711.
|
[35] |
KA SO, BANG IH, BAE EJ, et al. Hepatocyte-specific sirtuin 6 deletion predisposes to nonalcoholic steatohepatitis by up-regulation of Bach1, an Nrf2 repressor[J]. FASEB J, 2017, 31(9): 3999-4010. DOI: 10.1096/fj.201700098RR.
|
[36] |
YANG XD, CHEN Z, YE L, et al. Esculin protects against methionine choline-deficient diet-induced non-alcoholic steatohepatitis by regulating the Sirt1/NF-κB p65 pathway[J]. Pharm Biol, 2021, 59(1): 922-932. DOI: 10.1080/13880209.2021.1945112.
|
[37] |
XIAO C, WANG RH, LAHUSEN TJ, et al. Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice[J]. J Biol Chem, 2012, 287(50): 41903-41913. DOI: 10.1074/jbc.M112.415182.
|
[38] |
VACHHARAJANI VT, LIU T, WANG X, et al. Sirtuins link inflammation and metabolism[J]. J Immunol Res, 2016, 2016: 8167273. DOI: 10.1155/2016/8167273.
|
[39] |
TSUCHIDA T, FRIEDMAN SL. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. DOI: 10.1038/nrgastro.2017.38.
|
[40] |
LI M, HONG W, HAO C, et al. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice[J]. FASEB J, 2018, 32(1): 500-511. DOI: 10.1096/fj.201700612R.
|
[41] |
PAROLA M, PINZANI M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues[J]. Mol Aspects Med, 2019, 65: 37-55. DOI: 10.1016/j.mam.2018.09.002.
|
[42] |
KUNDU A, DEY P, PARK JH, et al. EX-527 prevents the progression of high-fat diet-induced hepatic steatosis and fibrosis by upregulating SIRT4 in Zucker rats[J]. Cells, 2020, 9(5): 1101. DOI: 10.3390/cells9051101.
|
[43] |
ARTEAGA M, SHANG N, DING X, et al. Inhibition of SIRT2 suppresses hepatic fibrosis[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(11): G1155-G1168. DOI: 10.1152/ajpgi.00271.2015.
|
[44] |
ZHONG X, HUANG M, KIM HG, et al. SIRT6 protects against liver fibrosis by deacetylation and suppression of SMAD3 in hepatic stellate cells[J]. Cell Mol Gastroenterol Hepatol, 2020, 10(2): 341-364. DOI: 10.1016/j.jcmgh.2020.04.005.
|
[45] |
RYU D, JO YS, LO SASSO G, et al. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function[J]. Cell Metab, 2014, 20(5): 856-869. DOI: 10.1016/j.cmet.2014.08.001.
|
[46] |
MARTÉNEZ-JIMÉNEZ V, CORTEZ-ESPINOSA N, RODRÍGUEZ-VARELA E, et al. Altered levels of sirtuin genes (SIRT1, SIRT2, SIRT3 and SIRT6) and their target genes in adipose tissue from individual with obesity[J]. Diabetes Metab Syndr, 2019, 13(1): 582-589. DOI: 10.1016/j.dsx.2018.11.011.
|
[47] |
KIM HS, XIAO C, WANG RH, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis[J]. Cell Metab, 2010, 12(3): 224-236. DOI: 10.1016/j.cmet.2010.06.009.
|
[48] |
SHARMA G, PARIHAR A, PARIHAR P, et al. Downregulation of sirtuin 3 by palmitic acid increases the oxidative stress, impairment of mitochondrial function, and apoptosis in liver cells[J]. J Biochem Mol Toxicol, 2019, 33(8): e22337. DOI: 10.1002/jbt.22337.
|
[49] |
LI M, HONG W, HAO C, et al. Hepatic stellate cell-specific deletion of SIRT1 exacerbates liver fibrosis in mice[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(12): 3202-3211. DOI: 10.1016/j.bbadis.2017.09.008.
|
[50] |
ZHANG J, LI Y, LIU Q, et al. Sirt6 alleviated liver fibrosis by deacetylating conserved lysine 54 on smad2 in hepatic stellate cells[J]. Hepatology, 2021, 73(3): 1140-1157. DOI: 10.1002/hep.31418.
|
[51] |
CLAVERIA-CABELLO A, COLYN L, ARECHEDERRA M, et al. Epigenetics in liver fibrosis: Could HDACs be a therapeutic target?[J]. Cells, 2020, 9(10): 2321. DOI: 10.3390/cells9102321.
|
[52] |
NASSIR F, IBDAH JA. Sirtuins and nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2016, 22(46): 10084-10092. DOI: 10.3748/wjg.v22.i46.10084.
|