[1] |
LLEO A, WANG GQ, GERSHWIN ME, et al. Primary biliary cholangitis[J]. Lancet, 2020, 396(10266): 1915-1926. DOI: 10.1016/S0140-6736(20)31607-X.
|
[2] |
TRIVEDI PJ, HIRSCHFIELD GM. Recent advances in clinical practice: epidemiology of autoimmune liver diseases[J]. Gut, 2021, 70(10): 1989-2003. DOI: 10.1136/gutjnl-2020-322362.
|
[3] |
ZENG N, DUAN W, CHEN S, et al. Epidemiology and clinical course of primary biliary cholangitis in the Asia-Pacific region: a systematic review and meta-analysis[J]. Hepatol Int, 2019, 13(6): 788-799. DOI: 10.1007/s12072-019-09984-x.
|
[4] |
TERZIROLI BERETTA-PICCOLI B, MIELI-VERGANI G, VERGANI D, et al. The challenges of primary biliary cholangitis: What is new and what needs to be done[J]. J Autoimmun, 2019, 105: 102328. DOI: 10.1016/j.jaut.2019.102328.
|
[5] |
GULAMHUSEIN AF, HIRSCHFIELD GM. Primary biliary cholangitis: pathogenesis and therapeutic opportunities[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(2): 93-110. DOI: 10.1038/s41575-019-0226-7.
|
[6] |
HANG S, PAIK D, YAO L, et al. Bile acid metabolites control TH17 and Treg cell differentiation[J]. Nature, 2019, 576(7785): 143-148. DOI: 10.1038/s41586-019-1785-z.
|
[7] |
SONG X, SUN X, OH SF, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis[J]. Nature, 2020, 577(7790): 410-415. DOI: 10.1038/s41586-019-1865-0.
|
[8] |
XIANG J, ZHANG Z, XIE H, et al. Effect of different bile acids on the intestine through enterohepatic circulation based on FXR[J]. Gut Microbes, 2021, 13(1): 1949095. DOI: 10.1080/19490976.2021.1949095.
|
[9] |
WANG Y, LI J, MATYE D, et al. Bile acids regulate cysteine catabolism and glutathione regeneration to modulate hepatic sensitivity to oxidative injury[J]. JCI Insight, 2018, 3(8): e99676. DOI: 10.1172/jci.insight.99676.
|
[10] |
JUNG H, CHEN J, HU X, et al. BRD4 inhibition and FXR activation, individually beneficial in cholestasis, are antagonistic in combination[J]. JCI Insight, 2020, 6(1): e141640. DOI: 10.1172/jci.insight.141640.
|
[11] |
XIE C, TAKAHASHI S, BROCKER CN, et al. Hepatocyte peroxisome proliferator-activated receptor α regulates bile acid synthesis and transport[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(10): 1396-1411. DOI: 10.1016/j.bbalip.2019.05.014.
|
[12] |
JONES D, BOUDES PF, SWAIN MG, et al. Seladelpar (MBX-8025), a selective PPAR-δ agonist, in patients with primary biliary cholangitis with an inadequate response to ursodeoxycholic acid: a double-blind, randomised, placebo-controlled, phase 2, proof-of-concept study[J]. Lancet Gastroenterol Hepatol, 2017, 2(10): 716-726. DOI: 10.1016/S2468-1253(17)30246-7.
|
[13] |
ENHANCE: Safety and efficacy of seladelpar in patients with primary biliary cholangitis-a phase 3, international, randomized, placebo-controlled study[J]. Gastroenterol Hepatol (N Y), 2021, 17(2 Suppl 3): 5-6.
|
[14] |
KREMER AE, MAYO MJ, HIRSCHFIELD G, et al. Seladelpar improved measures of pruritus, sleep, and fatigue and decreased serum bile acids in patients with primary biliary cholangitis[J]. Liver Int, 2022, 42(1): 112-123. DOI: 10.1111/liv.15039.
|
[15] |
XU BY, TANG XD, CHEN J, et al. Rifampicin induces clathrin-dependent endocytosis and ubiquitin-proteasome degradation of MRP2 via oxidative stress-activated PKC-ERK/JNK/p38 and PI3K signaling pathways in HepG2 cells[J]. Acta Pharmacol Sin, 2020, 41(1): 56-64. DOI: 10.1038/s41401-019-0266-0.
|
[16] |
SONODA J, CHONG LW, DOWNES M, et al. Pregnane X receptor prevents hepatorenal toxicity from cholesterol metabolites[J]. Proc Natl Acad Sci U S A, 2005, 102(6): 2198-2203. DOI: 10.1073/pnas.0409481102.
|
[17] |
KHURANA S, SINGH P. Rifampin is safe for treatment of pruritus due to chronic cholestasis: a meta-analysis of prospective randomized-controlled trials[J]. Liver Int, 2006, 26(8): 943-948. DOI: 10.1111/j.1478-3231.2006.01326.x.
|
[18] |
SULTANA H, KOMAI M, SHIRAKAWA H. The role of vitamin K in cholestatic liver disease[J]. Nutrients, 2021, 13(8): 2515. DOI: 10.3390/nu13082515.
|
[19] |
ZHANG Z, CHEN F, LI J, et al. 1, 25(OH)2D3 suppresses proinflammatory responses by inhibiting Th1 cell differentiation and cytokine production through the JAK/STAT pathway[J]. Am J Transl Res, 2018, 10(8): 2737-2746.
|
[20] |
FANG F, WANG J, PAN J, et al. Relationship between vitamin D (1, 25-dihydroxyvitamin D3) receptor gene polymorphisms and primary biliary cirrhosis risk: a meta-analysis[J]. Genet Mol Res, 2015, 14(1): 981-988. DOI: 10.4238/2015.February.6.1.
|
[21] |
KEMPINSKA-PODHORODECKA A, MILKIEWICZ M, WASIK U, et al. Decreased expression of vitamin D receptor affects an immune response in primary biliary cholangitis via the VDR-miRNA155-SOCS1 pathway[J]. Int J Mol Sci, 2017, 18(2): 289. DOI: 10.3390/ijms18020289.
|
[22] |
GONZALEZ-SANCHEZ E, EL MOURABIT H, JAGER M, et al. Cholangiopathy aggravation is caused by VDR ablation and alleviated by VDR-independent vitamin D signaling in ABCB4 knockout mice[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(4): 166067. DOI: 10.1016/j.bbadis.2020.166067.
|
[23] |
VASSILEVA G, GOLOVKO A, MARKOWITZ L, et al. Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation[J]. Biochem J, 2006, 398(3): 423-430. DOI: 10.1042/BJ20060537.
|
[24] |
FIORUCCI S, DISTRUTTI E, CARINO A, et al. Bile acids and their receptors in metabolic disorders[J]. Prog Lipid Res, 2021, 82: 101094. DOI: 10.1016/j.plipres.2021.101094.
|
[25] |
SANG C, WANG X, ZHOU K, et al. Bile acid profiles are distinct among patients with different etiologies of chronic liver disease[J]. J Proteome Res, 2021, 20(5): 2340-2351. DOI: 10.1021/acs.jproteome.0c00852.
|
[26] |
CHEN W, WEI Y, XIONG A, et al. Comprehensive analysis of serum and fecal bile acid profiles and interaction with gut microbiota in primary biliary cholangitis[J]. Clin Rev Allergy Immunol, 2020, 58(1): 25-38. DOI: 10.1007/s12016-019-08731-2.
|
[27] |
PRIETO J, QIAN C, GARCÍA N, et al. Abnormal expression of anion exchanger genes in primary biliary cirrhosis[J]. Gastroenterology, 1993, 105(2): 572-578. DOI: 10.1016/0016-5085(93)90735-u.
|
[28] |
MEDINA JF, MARTÍNEZ-ANSÓ, VAZQUEZ JJ, et al. Decreased anion exchanger 2 immunoreactivity in the liver of patients with primary biliary cirrhosis[J]. Hepatology, 1997, 25(1): 12-17. DOI: 10.1002/hep.510250104.
|
[29] |
BANALES JM, SÁEZ E, URIZ M, et al. Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis[J]. Hepatology, 2012, 56(2): 687-697. DOI: 10.1002/hep.25691.
|
[30] |
RODRIGUES PM, PERUGORRIA MJ, SANTOS-LASO A, et al. Primary biliary cholangitis: A tale of epigenetically-induced secretory failure?[J]. J Hepatol, 2018, 69(6): 1371-1383. DOI: 10.1016/j.jhep.2018.08.020.
|
[31] |
HISAMOTO S, SHIMODA S, HARADA K, et al. Hydrophobic bile acids suppress expression of AE2 in biliary epithelial cells and induce bile duct inflammation in primary biliary cholangitis[J]. J Autoimmun, 2016, 75: 150-160. DOI: 10.1016/j.jaut.2016.08.006.
|
[32] |
KOJIMA H, NIES AT, KÖNIG J, et al. Changes in the expression and localization of hepatocellular transporters and radixin in primary biliary cirrhosis[J]. J Hepatol, 2003, 39(5): 693-702. DOI: 10.1016/s0168-8278(03)00410-0.
|
[33] |
INAMINE T, HIGA S, NOGUCHI F, et al. Association of genes involved in bile acid synthesis with the progression of primary biliary cirrhosis in Japanese patients[J]. J Gastroenterol, 2013, 48(10): 1160-1170. DOI: 10.1007/s00535-012-0730-9.
|
[34] |
PHAM DH, KUDIRA R, XU L, et al. Deleterious variants in ABCC12 are detected in idiopathic chronic cholestasis and cause intrahepatic bile duct loss in model organisms[J]. Gastroenterology, 2021, 161(1): 287-300. e16. DOI: 10.1053/j.gastro.2021.03.026.
|
[35] |
AFONSO MB, RODRIGUES PM, SIMÃO AL, et al. miRNA-21 ablation protects against liver injury and necroptosis in cholestasis[J]. Cell Death Differ, 2018, 25(5): 857-872. DOI: 10.1038/s41418-017-0019-x.
|
[36] |
JUANOLA O, HASSAN M, KUMAR P, et al. Intestinal microbiota drives cholestasis-induced specific hepatic gene expression patterns[J]. Gut Microbes, 2021, 13(1): 1-20. DOI: 10.1080/19490976.2021.1911534.
|
[37] |
WANG D, DOESTZADA M, CHEN L, et al. Characterization of gut microbial structural variations as determinants of human bile acid metabolism[J]. Cell Host Microbe, 2021, 29(12): 1802-1814. e5. DOI: 10.1016/j.chom.2021.11.003.
|
[38] |
LI Y, TANG R, LEUNG P, et al. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases[J]. Autoimmun Rev, 2017, 16(9): 885-896. DOI: 10.1016/j.autrev.2017.07.002.
|
[39] |
HARUTA I, HASHIMOTO E, KATO Y, et al. Lipoteichoic acid may affect the pathogenesis of bile duct damage in primary biliary cirrhosis[J]. Autoimmunity, 2006, 39(2): 129-135. DOI: 10.1080/08916930600623841.
|
[40] |
TANG R, WEI Y, LI Y, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy[J]. Gut, 2018, 67(3): 534-541. DOI: 10.1136/gutjnl-2016-313332.
|
[41] |
LI B, ZHANG J, CHEN Y, et al. Alterations in microbiota and their metabolites are associated with beneficial effects of bile acid sequestrant on icteric primary biliary cholangitis[J]. Gut Microbes, 2021, 13(1): 1946366. DOI: 10.1080/19490976.2021.1946366.
|
[42] |
HARMS MH, VAN BUUREN HR, CORPECHOT C, et al. Ursodeoxycholic acid therapy and liver transplant-free survival in patients with primary biliary cholangitis[J]. J Hepatol, 2019, 71(2): 357-365. DOI: 10.1016/j.jhep.2019.04.001.
|
[43] |
XIA ZY, HAN T, MENG HJ. Clinical efficacy of early stage immunosuppression combined with ursodeoxycholic acid in the treatment of primary biliary cirrhosis[J]. Clin J Med Offic, 2020, 48(1): 97-98, 101. DOI: 10.16680/j.1671-3826.2020.01.33.
夏志勇, 韩涛, 孟红军. 早期免疫抑制联合熊去氧胆酸治疗原发性胆汁性肝硬化临床疗效[J]. 临床军医杂志, 2020, 48(1): 97-98, 101. DOI: 10.16680/j.1671-3826.2020.01.33.
|
[44] |
KULKARNI AV, TEVETHIA HV, ARAB JP, et al. Efficacy and safety of obeticholic acid in liver disease-A systematic review and meta-analysis[J]. Clin Res Hepatol Gastroenterol, 2021, 45(3): 101675. DOI: 10.1016/j.clinre.2021.101675.
|
[45] |
KJÆRGAARD K, FRISCH K, SØRENSEN M, et al. Obeticholic acid improves hepatic bile acid excretion in patients with primary biliary cholangitis[J]. J Hepatol, 2021, 74(1): 58-65. DOI: 10.1016/j.jhep.2020.07.028.
|
[46] |
GOMEZ E, GARCIA BUEY L, MOLINA E, et al. Effectiveness and safety of obeticholic acid in a Southern European multicentre cohort of patients with primary biliary cholangitis and suboptimal response to ursodeoxycholic acid[J]. Aliment Pharmacol Ther, 2021, 53(4): 519-530. DOI: 10.1111/apt.16181.
|
[47] |
VERBEKE L, NEVENS F, LALEMAN W. Steroidal or non-steroidal FXR agonists - Is that the question?[J]. J Hepatol, 2017, 66(4): 680-681. DOI: 10.1016/j.jhep.2017.01.013.
|
[48] |
JOHN BV, SCHWARTZ K, LEVY C, et al. Impact of obeticholic acid exposure on decompensation and mortality in primary biliary cholangitis and cirrhosis[J]. Hepatol Commun, 2021, 5(8): 1426-1436. DOI: 10.1002/hep4.1720.
|
[49] |
CHEN J, GU J, SHAH B, et al. Pharmacokinetics of tropifexor, a potent farnesoid X receptor agonist, in participants with varying degrees of hepatic impairment[J]. J Clin Pharmacol, 2022, 62(4): 520-531. DOI: 10.1002/jcph.1996.
|
[50] |
FENG BL, YU HH, SHEN W. Ursodeoxycholic acid combined with bezafibrate in the treatment of refractory primary biliary cholangitis: a meta-analysis[J]. Chin J Hepatol, 2019, 27(4): 304-311. DOI: 10.3760/cma.j.issn.1007-3418.2019.04.012.
奉白蕾, 俞慧宏, 沈薇. 熊去氧胆酸联合苯扎贝特治疗难治性原发性胆汁性胆管炎的Meta分析[J]. 中华肝脏病杂志, 2019, 27(4): 304-311. DOI: 10.3760/cma.j.issn.1007-3418.2019.04.012.
|
[51] |
SCHATTENBERG JM, PARES A, KOWDLEY KV, et al. A randomized placebo-controlled trial of elafibranor in patients with primary biliary cholangitis and incomplete response to UDCA[J]. J Hepatol, 2021, 74(6): 1344-1354. DOI: 10.1016/j.jhep.2021.01.013.
|
[52] |
KIM KY, MANCANO MA. Fenofibrate potentiates warfarin effects[J]. Ann Pharmacother, 2003, 37(2): 212-215. DOI: 10.1177/106002800303700210.
|
[53] |
FILIPPATOS TD, ELISAF MS. Safety considerations with fenofibrate/simvastatin combination[J]. Expert Opin Drug Saf, 2015, 14(9): 1481-1493. DOI: 10.1517/14740338.2015.1056778.
|
[54] |
GHONEM NS, ASSIS DN, BOYER JL. Fibrates and cholestasis[J]. Hepatology, 2015, 62(2): 635-643. DOI: 10.1002/hep.27744.
|