中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 10
Oct.  2022
Turn off MathJax
Article Contents

Recent advancement in research on intrahepatic cholangiocarcinoma: Risk factors and pathogenesis

DOI: 10.3969/j.issn.1001-5256.2022.10.037
Research funding:

Project of Clinical Research Association of Chinese Medicine Higher Education Society (2019ZYGJ006);

Tianjin Municipal Science and Technology Commission Special Scientific and Technology Project for Chronic Disease Prevention and Control (17ZXMFSY00190)

More Information
  • Corresponding author: LI Zheng, lizheng9899@163.com(ORCID: 0000-0003-3737-1131)
  • Received Date: 2022-03-13
  • Accepted Date: 2022-04-14
  • Published Date: 2022-10-20
  • Intrahepatic cholangiocarcinoma (ICC) accounts for the second highest hepatobiliary malignancy after hepatocellular carcinoma. ICC has a complex etiology and is a high invasive disease with a poor prognosis. To date, surgical resection is still the best treatment to cure early staged ICCs clinically; however, due to ICC diagnosis at the advanced stages of disease and tumor with high degree of malignancy, most patients miss the optimal time for surgery. Thus, it is crucial to detect and intervene ICC at the earliest stage of disease clinically. The ICC risk factors may include primary sclerosing cholangitis, viral hepatitis, and intrahepatic cholangiolithiasis. The rapid development of molecular biology and genetics provides a better methodology in in-depth study of ICC pathogenesis. This review summarized and discussed the most recent advancement in identification of the ICC risk factors and molecular mechanisms of ICC pathogenesis, which may provide valuable and insightful information for ICC early detection and potential treatment strategy.

     

  • loading
  • [1]
    SHIN HR, OH JK, MASUYER E, et al. Comparison of incidence of intrahepatic and extrahepatic cholangiocarcinoma-focus on East and South-Eastern Asia[J]. Asian Pac J Cancer Prev, 2010, 11(5): 1159-1166.
    [2]
    CHEN C, WU YH, ZHANG JW, et al. A prognostic model of intrahepatic cholangiocarcinoma after curative intent resection based on Bayesian network[J]. Chin J Surg, 2021, 59(4): 265-271. DOI: 10.3760/cma.j.cn112139-20201230-00891.

    陈晨, 吴予涵, 张景玮, 等. 基于贝叶斯网络的肝内胆管癌根治术后生存预测模型的初步探讨[J]. 中华外科杂志, 2021, 59(4): 265-271. DOI: 10.3760/cma.j.cn112139-20201230-00891.
    [3]
    ZHAO YH, LYU Q, YANG RX, et al. Clinical data of cryptogenic liver cancer confirmed by pathological diagnosis: an analysis of 14 cases[J]. J Oncol Chin Med, 2020, 2(2): 19-23, 38. DOI: 10.19811/j.cnki.ISSN2096-6628.2020.02.005.

    赵远红, 吕强, 杨瑞雪, 等. 14例病理诊断明确的隐源性肝癌临床资料分析[J]. 中医肿瘤学杂志, 2020, 2(2): 19-23, 38. DOI: 10.19811/j.cnki.ISSN2096-6628.2020.02.005.
    [4]
    FUNG BM, LINDOR KD, TABIBIAN JH. Cancer risk in primary sclerosing cholangitis: Epidemiology, prevention, and surveillance strategies[J]. World J Gastroenterol, 2019, 25(6): 659-671. DOI: 10.3748/wjg.v25.i6.659.
    [5]
    BJÖRNSSON E, OLSSON R, BERGQUIST A, et al. The natural history of small-duct primary sclerosing cholangitis[J]. Gastroenterology, 2008, 134(4): 975-980. DOI: 10.1053/j.gastro.2008.01.042.
    [6]
    FEVERY J, VERSLYPE C, LAI G, et al. Incidence, diagnosis, and therapy of cholangiocarcinoma in patients with primary sclerosing cholangitis[J]. Dig Dis Sci, 2007, 52(11): 3123-3135. DOI: 10.1007/s10620-006-9681-4.
    [7]
    CLEMENTS O, ELIAHOO J, KIM JU, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: A systematic review and meta-analysi[J]. J Hepatol, 2020, 72(1): 95-103. DOI: 10.1016/j.jhep.2019.09.007.
    [8]
    FRAGKOU N, SIDERAS L, PANAS P, et al. Update on the association of hepatitis B with intrahepatic cholangiocarcinoma: Is there new evidence?[J]. World J Gastroenterol, 2021, 27(27): 4252-4275. DOI: 10.3748/wjg.v27.i27.4252.
    [9]
    TANAKA M, TANAKA H, TSUKUMA H, et al. Risk factors for intrahepatic cholangiocarcinoma: a possible role of hepatitis B virus[J]. J Viral Hepat, 2010, 17(10): 742-748. DOI: 10.1111/j.1365-2893.2009.01243.x.
    [10]
    WANG WL, GU GY, HU M. Expression and significance of HBV genes and their antigens in human primary intrahepatic cholangiocarcinoma[J]. World J Gastroenterol, 1998, 4(5): 392-396. DOI: 10.3748/wjg.v4.i5.392.
    [11]
    LEI Z, XIA Y, SI A, et al. Antiviral therapy improves survival in patients with HBV infection and intrahepatic cholangiocarcinoma undergoing liver resection[J]. J Hepatol, 2018, 68(4): 655-662. DOI: 10.1016/j.jhep.2017.11.015.
    [12]
    POLLICINO T, MUSOLINO C, SAITTA C, et al. Free episomal and integrated HBV DNA in HBsAg-negative patients with intrahepatic cholangiocarcinoma[J]. Oncotarget, 2019, 10(39): 3931-3938. DOI: 10.18632/oncotarget.27002.
    [13]
    LI Y, WANG H, LI D, et al. Occult hepatitis B virus infection in Chinese cryptogenic intrahepatic cholangiocarcinoma patient population[J]. J Clin Gastroenterol, 2014, 48(10): 878-882. DOI: 10.1097/MCG.0000000000000058.
    [14]
    YOU WH, LIANG Y, LYU L. Pathogenesis and clinical translation of intrahepatic cholangiocarcinoma in the era of precision medicine[J]. J Clin Hepatol, 2021, 37(4): 935-938. DOI: 10.3969/j.issn.1001-5256.2021.04.045.

    尤文化, 梁渊, 吕凌. 精准医学时代下肝内胆管癌的发病机制与临床转化[J]. 临床肝胆病杂志, 2021, 37(4): 935-938. DOI: 10.3969/j.issn.1001-5256.2021.04.045.
    [15]
    SHEN H, XIA Y, CHEN YB, et al. Risk factors analysis of intrahepatic cholangiocarcinoma after hepatectomy for hepatolithiasis[J]. Chin J Dig Surg, 2020, 19(8): 835-842. DOI: 10.3760/cma.j.cn115610-20200531-00402.

    沈皓, 夏勇, 陈玉宝, 等. 肝内胆管结石肝切除术后发生肝内胆管癌的危险因素分析[J]. 中华消化外科杂志, 2020, 19(8): 835-842. DOI: 10.3760/cma.j.cn115610-20200531-00402.
    [16]
    NIU TT, ZHANG GX, CHEN BH, et al. Study on the risk factors of hepatolithiasis developing intrahepatic cholangiocarcinoma. [J]. Chin Hepatol, 2020, 25(7): 705-708. DOI: 10.14000/j.cnki.issn.1008-1704.2020.07.017.

    牛腾腾, 张贡献, 陈宝华, 等. 肝胆管结石进展肝内胆管癌的危险因素研究[J]. 肝脏, 2020, 25(7): 705-708. DOI: 10.14000/j.cnki.issn.1008-1704.2020.07.017.
    [17]
    WEI MY, ZHANG YY, GENG ZM, et al. Clinicopathological features and lymph node metastases characteristics of intrahepatic cholangiocarcinoma: a multicenter retrospective study (A report of 1321 cases)[J]. Chin J Dig Surg, 2018, 17(3): 257-265. DOI: 10.3760/cma.j.issn.1673-9752.2018.03.009.

    魏妙艳, 张园园, 耿智敏, 等. 肝内胆管癌临床病理特征及淋巴结转移特点的多中心回顾性研究(附1321例报告)[J]. 中华消化外科杂志, 2018, 17(3): 257-265. DOI: 10.3760/cma.j.issn.1673-9752.2018.03.009.
    [18]
    KAMSA-ARD S, KAMSA-ARD S, LUVIRA V, et al. Risk factors for cholangiocarcinoma in thailand: a systematic review and meta-analysis[J]. Asian Pac J Cancer Prev, 2018, 19(3): 605-614. DOI: 10.22034/APJCP.2018.19.3.605.
    [19]
    SHIN HR, OH JK, MASUYER E, et al. Epidemiology of cholangiocarcinoma: an update focusing on risk factors[J]. Cancer Sci, 2010, 101(3): 579-585. DOI: 10.1111/j.1349-7006.2009.01458.x.
    [20]
    XIONG J, LU X, XU W, et al. Metabolic syndrome and the risk of cholangiocarcinoma: a hospital-based case-control study in China[J]. Cancer Manag Res, 2018, 10: 3849-3855. DOI: 10.2147/CMAR.S175628.
    [21]
    SHAIB Y, EL-SERAG HB. The epidemiology of cholangiocarcinoma[J]. Semin Liver Dis, 2004, 24(2): 115-125. DOI: 10.1055/s-2004-828889.
    [22]
    DI MATTEO S, NEVI L, OVERI D, et al. Metformin exerts anti-cancerogenic effects and reverses epithelial-to-mesenchymal transition trait in primary human intrahepatic cholangiocarcinoma cells[J]. Sci Rep, 2021, 11(1): 2557. DOI: 10.1038/s41598-021-81172-0.
    [23]
    SIRICA AE. Role of ErbB family receptor tyrosine kinases in intrahepatic cholangiocarcinoma[J]. World J Gastroenterol, 2008, 14(46): 7033-7058. DOI: 10.3748/wjg.14.7033.
    [24]
    SU WC, SHIESH SC, LIU HS, et al. Expression of oncogene products HER2/Neu and Ras and fibrosis-related growth factors bFGF, TGF-beta, and PDGF in bile from biliary malignancies and inflammatory disorders[J]. Dig Dis Sci, 2001, 46(7): 1387-1392. DOI: 10.1023/a:1010619316436.
    [25]
    YAN W, WANG X, LIU T, et al. Expression of endoplasmic reticulum oxidoreductase 1-α in cholangiocarcinoma tissues and its effects on the proliferation and migration of cholangiocarcinoma cells[J]. Cancer Manag Res, 2019, 11: 6727-6739. DOI: 10.2147/CMAR.S188746.
    [26]
    WEI MY, TANG ZH, QUAN ZW. Intrahepatic cholangiocarcinoma: Role of metabolism in pathogenesis, clinical diagnosis, and treatment. [J]. World Chin J Dig, 2017, 25(33): 2929-2937. DOI: 10.11569/wcjd.v25.i33.2929.

    魏妙艳, 汤朝晖, 全志伟. 代谢在肝内胆管癌发病机制及临床诊治中的研究进展[J]. 世界华人消化杂志, 2017, 25(33): 2929-2937. DOI: 10.11569/wcjd.v25.i33.2929.
    [27]
    WANG L, ZHU H, ZHAO Y, et al. Comprehensive molecular profiling of intrahepatic cholangiocarcinoma in the Chinese population and therapeutic experience[J]. J Transl Med, 2020, 18(1): 273. DOI: 10.1186/s12967-020-02437-2.
    [28]
    MIYATA T, YAMASHITA YI, YOSHIZUMI T, et al. CXCL12 expression in intrahepatic cholangiocarcinoma is associated with metastasis and poor prognosis[J]. Cancer Sci, 2019, 110(10): 3197-3203. DOI: 10.1111/cas.14151.
    [29]
    CEN W, LI J, TONG C, et al. Intrahepatic cholangiocarcinoma cells promote epithelial-mesenchymal transition of hepatocellular carcinoma cells by secreting LAMC2[J]. J Cancer, 2021, 12(12): 3448-3457. DOI: 10.7150/jca.55627.
    [30]
    CHEN S, CHEN GX, HE ZM, et al. Role of miRNA in the development and progression of cholangiocarcinoma[J]. J Clin Hepatol, 2021, 37(9): 2241-2245. DOI: 10.3969/j.issn.1001-5256.2021.09.048.

    陈圣, 陈国想, 何中明, 等. 微小RNA在胆管癌发生发展中的作用[J]. 临床肝胆病杂志, 2021, 37(9): 2241-2245. DOI: 10.3969/j.issn.1001-5256.2021.09.048.
    [31]
    PU T, FANG Q, CHEN ZX, et al. Advances in molecular pathogenesis and treatment of intrahepatic cholangiocarcinoma[J]. Chin J Dig Surg, 2020, 19(6): 697-702. DOI: 10.3760/cma.j.cn115610-20200504-00325.

    濮天, 方强, 陈子祥, 等. 肝内胆管癌发病机制及治疗相关进展[J]. 中华消化外科杂志, 2020, 19(6): 697-702. DOI: 10.3760/cma.j.cn115610-20200504-00325.
    [32]
    CHEN L, YAN HX, YANG W, et al. The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma[J]. J Hepatol, 2009, 50(2): 358-369. DOI: 10.1016/j.jhep.2008.09.015.
    [33]
    HU C, HUANG F, DENG G, et al. miR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1[J]. Exp Ther Med, 2013, 6(5): 1265-1270. DOI: 10.3892/etm.2013.1311.
    [34]
    WANG LJ, HE CC, SUI X, et al. MiR-21 promotes intrahepatic cholangiocarcinoma proliferation and growth in vitro and in vivo by targeting PTPN14 and PTEN[J]. Oncotarget, 2015, 6(8): 5932-5946. DOI: 10.18632/oncotarget.3465.
    [35]
    LI B, HAN Q, ZHU Y, et al. Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist[J]. FEBS J, 2012, 279(13): 2393-2398. DOI: 10.1111/j.1742-4658.2012.08618.x.
    [36]
    OISHI N, KUMAR MR, ROESSLER S, et al. Transcriptomic profiling reveals hepatic stem-like gene signatures and interplay of miR-200c and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma[J]. Hepatology, 2012, 56(5): 1792-1803. DOI: 10.1002/hep.25890.
    [37]
    ZENG B, LI Z, CHEN R, et al. Epigenetic regulation of miR-124 by hepatitis C virus core protein promotes migration and invasion of intrahepatic cholangiocarcinoma cells by targeting SMYD3[J]. FEBS Lett, 2012, 586(19): 3271-3278. DOI: 10.1016/j.febslet.2012.06.049.
    [38]
    VERNIA S, CAVANAGH-KYROS J, GARCIA-HARO L, et al. The PPARα-FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway[J]. Cell Metab, 2014, 20(3): 512-525. DOI: 10.1016/j.cmet.2014.06.010.
    [39]
    MANIERI E, FOLGUEIRA C, RODRÍGUEZ ME, et al. JNK-mediated disruption of bile acid homeostasis promotes intrahepatic cholangiocarcinoma[J]. Proc Natl Acad Sci U S A, 2020, 117(28): 16492-16499. DOI: 10.1073/pnas.2002672117.
    [40]
    ZHAO W, ZHAO J, GUO X, et al. LncRNA MT1JP plays a protective role in intrahepatic cholangiocarcinoma by regulating miR-18a-5p/FBP1 axis[J]. BMC Cancer, 2021, 21(1): 142. DOI: 10.1186/s12885-021-07838-0.
    [41]
    PENG Y, MENG G, SHENG X, et al. Transcriptome and DNA methylation analysis reveals molecular mechanisms underlying intrahepatic cholangiocarcinoma progression[J]. J Cell Mol Med, 2021, 25(13): 6373-6387. DOI: 10.1111/jcmm.16615.
    [42]
    JIAO M, NING S, CHEN J, et al. Long non-coding RNA ZEB1-AS1 predicts a poor prognosis and promotes cancer progression through the miR-200a/ZEB1 signaling pathway in intrahepatic cholangiocarcinoma[J]. Int J Oncol, 2020, 56(6): 1455-1467. DOI: 10.3892/ijo.2020.5023.
    [43]
    WU XW, PENG BG, SHEN SL. Role of necroptosis in cell differentiation of intrahepatic cholangiocarcinoma and hepatocellular carcinoma[J/CD]. Chin J Hepat Surg(Electronic Edition), 2021, 10(1): 108-110. DOI: 10.3877/cma.j.issn.2095-3232.2021.01.023.

    吴锡文, 彭宝岗, 沈顺利. 坏死性凋亡在肝内胆管细胞癌和肝细胞癌分化过程中的作用[J/CD]. 中华肝脏外科手术学电子杂志, 2021, 10(1): 108-110. DOI: 10.3877/cma.j.issn.2095-3232.2021.01.023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (952) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return