[1] |
SHIN HR, OH JK, MASUYER E, et al. Comparison of incidence of intrahepatic and extrahepatic cholangiocarcinoma-focus on East and South-Eastern Asia[J]. Asian Pac J Cancer Prev, 2010, 11(5): 1159-1166.
|
[2] |
CHEN C, WU YH, ZHANG JW, et al. A prognostic model of intrahepatic cholangiocarcinoma after curative intent resection based on Bayesian network[J]. Chin J Surg, 2021, 59(4): 265-271. DOI: 10.3760/cma.j.cn112139-20201230-00891.
陈晨, 吴予涵, 张景玮, 等. 基于贝叶斯网络的肝内胆管癌根治术后生存预测模型的初步探讨[J]. 中华外科杂志, 2021, 59(4): 265-271. DOI: 10.3760/cma.j.cn112139-20201230-00891.
|
[3] |
ZHAO YH, LYU Q, YANG RX, et al. Clinical data of cryptogenic liver cancer confirmed by pathological diagnosis: an analysis of 14 cases[J]. J Oncol Chin Med, 2020, 2(2): 19-23, 38. DOI: 10.19811/j.cnki.ISSN2096-6628.2020.02.005.
赵远红, 吕强, 杨瑞雪, 等. 14例病理诊断明确的隐源性肝癌临床资料分析[J]. 中医肿瘤学杂志, 2020, 2(2): 19-23, 38. DOI: 10.19811/j.cnki.ISSN2096-6628.2020.02.005.
|
[4] |
FUNG BM, LINDOR KD, TABIBIAN JH. Cancer risk in primary sclerosing cholangitis: Epidemiology, prevention, and surveillance strategies[J]. World J Gastroenterol, 2019, 25(6): 659-671. DOI: 10.3748/wjg.v25.i6.659.
|
[5] |
BJÖRNSSON E, OLSSON R, BERGQUIST A, et al. The natural history of small-duct primary sclerosing cholangitis[J]. Gastroenterology, 2008, 134(4): 975-980. DOI: 10.1053/j.gastro.2008.01.042.
|
[6] |
FEVERY J, VERSLYPE C, LAI G, et al. Incidence, diagnosis, and therapy of cholangiocarcinoma in patients with primary sclerosing cholangitis[J]. Dig Dis Sci, 2007, 52(11): 3123-3135. DOI: 10.1007/s10620-006-9681-4.
|
[7] |
CLEMENTS O, ELIAHOO J, KIM JU, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: A systematic review and meta-analysi[J]. J Hepatol, 2020, 72(1): 95-103. DOI: 10.1016/j.jhep.2019.09.007.
|
[8] |
FRAGKOU N, SIDERAS L, PANAS P, et al. Update on the association of hepatitis B with intrahepatic cholangiocarcinoma: Is there new evidence?[J]. World J Gastroenterol, 2021, 27(27): 4252-4275. DOI: 10.3748/wjg.v27.i27.4252.
|
[9] |
TANAKA M, TANAKA H, TSUKUMA H, et al. Risk factors for intrahepatic cholangiocarcinoma: a possible role of hepatitis B virus[J]. J Viral Hepat, 2010, 17(10): 742-748. DOI: 10.1111/j.1365-2893.2009.01243.x.
|
[10] |
WANG WL, GU GY, HU M. Expression and significance of HBV genes and their antigens in human primary intrahepatic cholangiocarcinoma[J]. World J Gastroenterol, 1998, 4(5): 392-396. DOI: 10.3748/wjg.v4.i5.392.
|
[11] |
LEI Z, XIA Y, SI A, et al. Antiviral therapy improves survival in patients with HBV infection and intrahepatic cholangiocarcinoma undergoing liver resection[J]. J Hepatol, 2018, 68(4): 655-662. DOI: 10.1016/j.jhep.2017.11.015.
|
[12] |
POLLICINO T, MUSOLINO C, SAITTA C, et al. Free episomal and integrated HBV DNA in HBsAg-negative patients with intrahepatic cholangiocarcinoma[J]. Oncotarget, 2019, 10(39): 3931-3938. DOI: 10.18632/oncotarget.27002.
|
[13] |
LI Y, WANG H, LI D, et al. Occult hepatitis B virus infection in Chinese cryptogenic intrahepatic cholangiocarcinoma patient population[J]. J Clin Gastroenterol, 2014, 48(10): 878-882. DOI: 10.1097/MCG.0000000000000058.
|
[14] |
YOU WH, LIANG Y, LYU L. Pathogenesis and clinical translation of intrahepatic cholangiocarcinoma in the era of precision medicine[J]. J Clin Hepatol, 2021, 37(4): 935-938. DOI: 10.3969/j.issn.1001-5256.2021.04.045.
尤文化, 梁渊, 吕凌. 精准医学时代下肝内胆管癌的发病机制与临床转化[J]. 临床肝胆病杂志, 2021, 37(4): 935-938. DOI: 10.3969/j.issn.1001-5256.2021.04.045.
|
[15] |
SHEN H, XIA Y, CHEN YB, et al. Risk factors analysis of intrahepatic cholangiocarcinoma after hepatectomy for hepatolithiasis[J]. Chin J Dig Surg, 2020, 19(8): 835-842. DOI: 10.3760/cma.j.cn115610-20200531-00402.
沈皓, 夏勇, 陈玉宝, 等. 肝内胆管结石肝切除术后发生肝内胆管癌的危险因素分析[J]. 中华消化外科杂志, 2020, 19(8): 835-842. DOI: 10.3760/cma.j.cn115610-20200531-00402.
|
[16] |
NIU TT, ZHANG GX, CHEN BH, et al. Study on the risk factors of hepatolithiasis developing intrahepatic cholangiocarcinoma. [J]. Chin Hepatol, 2020, 25(7): 705-708. DOI: 10.14000/j.cnki.issn.1008-1704.2020.07.017.
牛腾腾, 张贡献, 陈宝华, 等. 肝胆管结石进展肝内胆管癌的危险因素研究[J]. 肝脏, 2020, 25(7): 705-708. DOI: 10.14000/j.cnki.issn.1008-1704.2020.07.017.
|
[17] |
WEI MY, ZHANG YY, GENG ZM, et al. Clinicopathological features and lymph node metastases characteristics of intrahepatic cholangiocarcinoma: a multicenter retrospective study (A report of 1321 cases)[J]. Chin J Dig Surg, 2018, 17(3): 257-265. DOI: 10.3760/cma.j.issn.1673-9752.2018.03.009.
魏妙艳, 张园园, 耿智敏, 等. 肝内胆管癌临床病理特征及淋巴结转移特点的多中心回顾性研究(附1321例报告)[J]. 中华消化外科杂志, 2018, 17(3): 257-265. DOI: 10.3760/cma.j.issn.1673-9752.2018.03.009.
|
[18] |
KAMSA-ARD S, KAMSA-ARD S, LUVIRA V, et al. Risk factors for cholangiocarcinoma in thailand: a systematic review and meta-analysis[J]. Asian Pac J Cancer Prev, 2018, 19(3): 605-614. DOI: 10.22034/APJCP.2018.19.3.605.
|
[19] |
SHIN HR, OH JK, MASUYER E, et al. Epidemiology of cholangiocarcinoma: an update focusing on risk factors[J]. Cancer Sci, 2010, 101(3): 579-585. DOI: 10.1111/j.1349-7006.2009.01458.x.
|
[20] |
XIONG J, LU X, XU W, et al. Metabolic syndrome and the risk of cholangiocarcinoma: a hospital-based case-control study in China[J]. Cancer Manag Res, 2018, 10: 3849-3855. DOI: 10.2147/CMAR.S175628.
|
[21] |
SHAIB Y, EL-SERAG HB. The epidemiology of cholangiocarcinoma[J]. Semin Liver Dis, 2004, 24(2): 115-125. DOI: 10.1055/s-2004-828889.
|
[22] |
DI MATTEO S, NEVI L, OVERI D, et al. Metformin exerts anti-cancerogenic effects and reverses epithelial-to-mesenchymal transition trait in primary human intrahepatic cholangiocarcinoma cells[J]. Sci Rep, 2021, 11(1): 2557. DOI: 10.1038/s41598-021-81172-0.
|
[23] |
SIRICA AE. Role of ErbB family receptor tyrosine kinases in intrahepatic cholangiocarcinoma[J]. World J Gastroenterol, 2008, 14(46): 7033-7058. DOI: 10.3748/wjg.14.7033.
|
[24] |
SU WC, SHIESH SC, LIU HS, et al. Expression of oncogene products HER2/Neu and Ras and fibrosis-related growth factors bFGF, TGF-beta, and PDGF in bile from biliary malignancies and inflammatory disorders[J]. Dig Dis Sci, 2001, 46(7): 1387-1392. DOI: 10.1023/a:1010619316436.
|
[25] |
YAN W, WANG X, LIU T, et al. Expression of endoplasmic reticulum oxidoreductase 1-α in cholangiocarcinoma tissues and its effects on the proliferation and migration of cholangiocarcinoma cells[J]. Cancer Manag Res, 2019, 11: 6727-6739. DOI: 10.2147/CMAR.S188746.
|
[26] |
WEI MY, TANG ZH, QUAN ZW. Intrahepatic cholangiocarcinoma: Role of metabolism in pathogenesis, clinical diagnosis, and treatment. [J]. World Chin J Dig, 2017, 25(33): 2929-2937. DOI: 10.11569/wcjd.v25.i33.2929.
魏妙艳, 汤朝晖, 全志伟. 代谢在肝内胆管癌发病机制及临床诊治中的研究进展[J]. 世界华人消化杂志, 2017, 25(33): 2929-2937. DOI: 10.11569/wcjd.v25.i33.2929.
|
[27] |
WANG L, ZHU H, ZHAO Y, et al. Comprehensive molecular profiling of intrahepatic cholangiocarcinoma in the Chinese population and therapeutic experience[J]. J Transl Med, 2020, 18(1): 273. DOI: 10.1186/s12967-020-02437-2.
|
[28] |
MIYATA T, YAMASHITA YI, YOSHIZUMI T, et al. CXCL12 expression in intrahepatic cholangiocarcinoma is associated with metastasis and poor prognosis[J]. Cancer Sci, 2019, 110(10): 3197-3203. DOI: 10.1111/cas.14151.
|
[29] |
CEN W, LI J, TONG C, et al. Intrahepatic cholangiocarcinoma cells promote epithelial-mesenchymal transition of hepatocellular carcinoma cells by secreting LAMC2[J]. J Cancer, 2021, 12(12): 3448-3457. DOI: 10.7150/jca.55627.
|
[30] |
CHEN S, CHEN GX, HE ZM, et al. Role of miRNA in the development and progression of cholangiocarcinoma[J]. J Clin Hepatol, 2021, 37(9): 2241-2245. DOI: 10.3969/j.issn.1001-5256.2021.09.048.
陈圣, 陈国想, 何中明, 等. 微小RNA在胆管癌发生发展中的作用[J]. 临床肝胆病杂志, 2021, 37(9): 2241-2245. DOI: 10.3969/j.issn.1001-5256.2021.09.048.
|
[31] |
PU T, FANG Q, CHEN ZX, et al. Advances in molecular pathogenesis and treatment of intrahepatic cholangiocarcinoma[J]. Chin J Dig Surg, 2020, 19(6): 697-702. DOI: 10.3760/cma.j.cn115610-20200504-00325.
濮天, 方强, 陈子祥, 等. 肝内胆管癌发病机制及治疗相关进展[J]. 中华消化外科杂志, 2020, 19(6): 697-702. DOI: 10.3760/cma.j.cn115610-20200504-00325.
|
[32] |
CHEN L, YAN HX, YANG W, et al. The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma[J]. J Hepatol, 2009, 50(2): 358-369. DOI: 10.1016/j.jhep.2008.09.015.
|
[33] |
HU C, HUANG F, DENG G, et al. miR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1[J]. Exp Ther Med, 2013, 6(5): 1265-1270. DOI: 10.3892/etm.2013.1311.
|
[34] |
WANG LJ, HE CC, SUI X, et al. MiR-21 promotes intrahepatic cholangiocarcinoma proliferation and growth in vitro and in vivo by targeting PTPN14 and PTEN[J]. Oncotarget, 2015, 6(8): 5932-5946. DOI: 10.18632/oncotarget.3465.
|
[35] |
LI B, HAN Q, ZHU Y, et al. Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist[J]. FEBS J, 2012, 279(13): 2393-2398. DOI: 10.1111/j.1742-4658.2012.08618.x.
|
[36] |
OISHI N, KUMAR MR, ROESSLER S, et al. Transcriptomic profiling reveals hepatic stem-like gene signatures and interplay of miR-200c and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma[J]. Hepatology, 2012, 56(5): 1792-1803. DOI: 10.1002/hep.25890.
|
[37] |
ZENG B, LI Z, CHEN R, et al. Epigenetic regulation of miR-124 by hepatitis C virus core protein promotes migration and invasion of intrahepatic cholangiocarcinoma cells by targeting SMYD3[J]. FEBS Lett, 2012, 586(19): 3271-3278. DOI: 10.1016/j.febslet.2012.06.049.
|
[38] |
VERNIA S, CAVANAGH-KYROS J, GARCIA-HARO L, et al. The PPARα-FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway[J]. Cell Metab, 2014, 20(3): 512-525. DOI: 10.1016/j.cmet.2014.06.010.
|
[39] |
MANIERI E, FOLGUEIRA C, RODRÍGUEZ ME, et al. JNK-mediated disruption of bile acid homeostasis promotes intrahepatic cholangiocarcinoma[J]. Proc Natl Acad Sci U S A, 2020, 117(28): 16492-16499. DOI: 10.1073/pnas.2002672117.
|
[40] |
ZHAO W, ZHAO J, GUO X, et al. LncRNA MT1JP plays a protective role in intrahepatic cholangiocarcinoma by regulating miR-18a-5p/FBP1 axis[J]. BMC Cancer, 2021, 21(1): 142. DOI: 10.1186/s12885-021-07838-0.
|
[41] |
PENG Y, MENG G, SHENG X, et al. Transcriptome and DNA methylation analysis reveals molecular mechanisms underlying intrahepatic cholangiocarcinoma progression[J]. J Cell Mol Med, 2021, 25(13): 6373-6387. DOI: 10.1111/jcmm.16615.
|
[42] |
JIAO M, NING S, CHEN J, et al. Long non-coding RNA ZEB1-AS1 predicts a poor prognosis and promotes cancer progression through the miR-200a/ZEB1 signaling pathway in intrahepatic cholangiocarcinoma[J]. Int J Oncol, 2020, 56(6): 1455-1467. DOI: 10.3892/ijo.2020.5023.
|
[43] |
WU XW, PENG BG, SHEN SL. Role of necroptosis in cell differentiation of intrahepatic cholangiocarcinoma and hepatocellular carcinoma[J/CD]. Chin J Hepat Surg(Electronic Edition), 2021, 10(1): 108-110. DOI: 10.3877/cma.j.issn.2095-3232.2021.01.023.
吴锡文, 彭宝岗, 沈顺利. 坏死性凋亡在肝内胆管细胞癌和肝细胞癌分化过程中的作用[J/CD]. 中华肝脏外科手术学电子杂志, 2021, 10(1): 108-110. DOI: 10.3877/cma.j.issn.2095-3232.2021.01.023.
|