[1] |
SIRICA AE, GORES GJ, GROOPMAN JD, et al. Intrahepatic Cholangiocarcinoma: Continuing Challenges and Translational Advances[J]. Hepatology, 2019, 69(4): 1803-1815. DOI: 10.1002/hep.30289.
|
[2] |
ESNAOLA NF, MEYER JE, KARACHRISTOS A, et al. Evaluation and management of intrahepatic and extrahepatic cholangiocarcinoma[J]. Cancer, 2016, 122(9): 1349-1369. DOI: 10.1002/cncr.29692.
|
[3] |
LI W, WANG JH, JIANG XQ. Characteristics of immune microenvironment and progress of immune checkpoint inhibitors to cholangiocarcinoma treatment[J]. Chin J Hepatobiliary Surg, 2021, 27(6): 466-471. DOI: 10.3760/cma.j.cn113884-20200713-00369.
李炜, 王敬晗, 姜小清. 胆管癌免疫微环境特点与免疫检查点抑制剂治疗进展[J]. 中华肝胆外科杂志, 2021, 27(6): 466-471. DOI: 10.3760/cma.j.cn113884-20200713-00369.
|
[4] |
VALLE JW, BORBATH I, KHAN SA, et al. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2016, 27(Suppl 5): v28-v37. DOI: 10.1093/annonc/mdw324.
|
[5] |
HØGDALL D, O'ROURKE CJ, TARANTA A, et al. Molecular pathogenesis and current therapy in intrahepatic cholangiocarcinoma[J]. Dig Dis, 2016, 34(4): 440-451. DOI: 10.1159/000444562.
|
[6] |
JIN MZ, JIN WL. The updated landscape of tumor microenvironment and drug repurposing[J]. Signal Transduct Target Ther, 2020, 5(1): 166. DOI: 10.1038/s41392-020-00280-x.
|
[7] |
IOANNIDES CG, WHITESIDE TL. T cell recognition of human tumors: implications for molecular immunotherapy of cancer[J]. Clin Immunol Immunopathol, 1993, 66(2): 91-106. DOI: 10.1006/clin.1993.1012.
|
[8] |
SIRICA AE, GORES GJ. Desmoplastic stroma and cholangiocarcinoma: clinical implications and therapeutic targeting[J]. Hepatology, 2014, 59(6): 2397-2402. DOI: 10.1002/hep.26762.
|
[9] |
GENTILINI A, PASTORE M, MARRA F, et al. The role of stroma in cholangiocarcinoma: The intriguing interplay between fibroblastic component, immune cell subsets and tumor epithelium[J]. Int J Mol Sci, 2018, 19(10): 2885. DOI: 10.3390/ijms19102885.
|
[10] |
SHA M, JEONG S, QIU BJ, et al. Isolation of cancer-associated fibroblasts and its promotion to the progression of intrahepatic cholangiocarcinoma[J]. Cancer Med, 2018, 7(9): 4665-4677. DOI: 10.1002/cam4.1704.
|
[11] |
SIRICA AE. The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma[J]. Nat Rev Gastroenterol Hepatol, 2011, 9(1): 44-54. DOI: 10.1038/nrgastro.2011.222.
|
[12] |
UTISPAN K, SONONGBUA J, THUWAJIT P, et al. Periostin activates integrin α5β1 through a PI3K/AKT-dependent pathway in invasion of cholangiocarcinoma[J]. Int J Oncol, 2012, 41(3): 1110-1118. DOI: 10.3892/ijo.2012.1530.
|
[13] |
CHEN X, SONG E. Turning foes to friends: targeting cancer-associated fibroblasts[J]. Nat Rev Drug Discov, 2019, 18(2): 99-115. DOI: 10.1038/s41573-018-0004-1.
|
[14] |
CHUAYSRI C, THUWAJIT P, PAUPAIROJ A, et al. Alpha-smooth muscle actin-positive fibroblasts promote biliary cell proliferation and correlate with poor survival in cholangiocarcinoma[J]. Oncol Rep, 2009, 21(4): 957-969. DOI: 10.3892/or_00000309.
|
[15] |
KALLURI R. The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16(9): 582-598. DOI: 10.1038/nrc.2016.73.
|
[16] |
FEIG C, JONES JO, KRAMAN M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2013, 110(50): 20212-20217. DOI: 10.1073/pnas.1320318110.
|
[17] |
YANG X, LIN Y, SHI Y, et al. FAP Promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling[J]. Cancer Res, 2016, 76(14): 4124-4135. DOI: 10.1158/0008-5472.CAN-15-2973.
|
[18] |
SIRET C, COLLIGNON A, SILVY F, et al. Deciphering the crosstalk between myeloid-derived suppressor cells and regulatory T cells in pancreatic ductal adenocarcinoma[J]. Front Immunol, 2019, 10: 3070. DOI: 10.3389/fimmu.2019.03070.
|
[19] |
BEURY DW, PARKER KH, NYANDJO M, et al. Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors[J]. J Leukoc Biol, 2014, 96(6): 1109-1118. DOI: 10.1189/jlb.3A0414-210R.
|
[20] |
SEUBWAI W, KRAIKLANG R, WONGKHAM C, et al. Hypoxia enhances aggressiveness of cholangiocarcinoma cells[J]. Asian Pac J Cancer Prev, 2012, 13 Suppl: 53-58.
|
[21] |
VANICHAPOL T, LEELAWAT K, HONGENG S. Hypoxia enhances cholangiocarcinoma invasion through activation of hepatocyte growth factor receptor and the extracellular signal-regulated kinase signaling pathway[J]. Mol Med Rep, 2015, 12(3): 3265-3272. DOI: 10.3892/mmr.2015.3865.
|
[22] |
ROBERT C. A decade of immune-checkpoint inhibitors in cancer therapy[J]. Nat Commun, 2020, 11(1): 3801. DOI: 10.1038/s41467-020-17670-y.
|
[23] |
KOURY J, LUCERO M, CATO C, et al. Immunotherapies: Exploiting the immune system for cancer treatment[J]. J Immunol Res, 2018, 2018: 9585614. DOI: 10.1155/2018/9585614.
|
[24] |
MERTENS JC, FINGAS CD, CHRISTENSEN JD, et al. Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma[J]. Cancer Res, 2013, 73(2): 897-907. DOI: 10.1158/0008-5472.CAN-12-2130.
|
[25] |
MAHIPAL A, TELLA SH, KOMMALAPATI A, et al. FGFR2 genomic aberrations: Achilles heel in the management of advanced cholangiocarcinoma[J]. Cancer Treat Rev, 2019, 78: 1-7. DOI: 10.1016/j.ctrv.2019.06.003.
|
[26] |
NAKAMURA H, ARAI Y, TOTOKI Y, et al. Genomic spectra of biliary tract cancer[J]. Nat Genet, 2015, 47(9): 1003-1010. DOI: 10.1038/ng.3375.
|
[27] |
JAVLE M, LOWERY M, SHROFF RT, et al. Phase Ⅱ study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma[J]. J Clin Oncol, 2018, 36(3): 276-282. DOI: 10.1200/JCO.2017.75.5009.
|
[28] |
MAZZAFERRO V, EL-RAYES BF, DROZ DIT BUSSET M, et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma[J]. Br J Cancer, 2019, 120(2): 165-171. DOI: 10.1038/s41416-018-0334-0.
|
[29] |
LING H, ROUX E, HEMPEL D, et al. Transforming growth factor β neutralization ameliorates pre-existing hepatic fibrosis and reduces cholangiocarcinoma in thioacetamide-treated rats[J]. PLoS One, 2013, 8(1): e54499. DOI: 10.1371/journal.pone.0054499.
|
[30] |
THONGCHOT S, FERRARESI A, VIDONI C, et al. Resveratrol interrupts the pro-invasive communication between cancer associated fibroblasts and cholangiocarcinoma cells[J]. Cancer Lett, 2018, 430: 160-171. DOI: 10.1016/j.canlet.2018.05.031.
|
[31] |
ZUO S, CHEN Q, ZOU WL. Current status and prospect of immunotherapy for cholangiocarcinoma[J]. Chin J Dig Surg, 2022, 21(7): 873-879. DOI: 10.3760/cma.j.cn115610-20220506-00254.
左石, 陈乾, 邹卫龙. 胆管癌免疫治疗的现状与展望[J]. 中华消化外科杂志, 2022, 21(7): 873-879. DOI: 10.3760/cma.j.cn115610-20220506-00254.
|
[32] |
MASSARWEH NN, EL-SERAG HB. Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Cancer Control, 2017, 24(3): 1073274817729245. DOI: 10.1177/1073274817729245.
|
[33] |
JUSAKUL A, CUTCUTACHE I, YONG CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma[J]. Cancer Discov, 2017, 7(10): 1116-1135. DOI: 10.1158/2159-8290.CD-17-0368.
|
[34] |
FARSHIDFAR F, ZHENG S, GINGRAS MC, et al. Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles[J]. Cell Rep, 2017, 19(13): 2878-2880. DOI: 10.1016/j.celrep.2017.06.008.
|
[35] |
GUO D, REINITZ F, YOUSSEF M, et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway[J]. Cancer Discov, 2011, 1(5): 442-456. DOI: 10.1158/2159-8290.CD-11-0102.
|
[36] |
TAVAZOIE MF, POLLACK I, TANQUECO R, et al. LXR/ApoE activation restricts innate immune suppression in cancer[J]. Cell, 2018, 172(4): 825-840. e18. DOI: 10.1016/j.cell.2017.12.026.
|
[37] |
LOEUILLARD E, YANG J, BUCKARMA E, et al. Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma[J]. J Clin Invest, 2020, 130(10): 5380-5396. DOI: 10.1172/JCI137110.
|
[38] |
JUNKING M, GRAINOK J, THEPMALEE C, et al. Enhanced cytotoxic activity of effector T-cells against cholangiocarcinoma by dendritic cells pulsed with pooled mRNA[J]. Tumour Biol, 2017, 39(10): 1010428317733367. DOI: 10.1177/1010428317733367.
|
[39] |
CHANG J, GU YC, LI XC. Research advances of immune checkpoint inhibitors in the treatment of cholangiocarcinoma[J]. Chin J Dig Surg, 2021, 20(2): 250-254. DOI: 10.3760/cma.j.cn115610-20210122-00037.
长江, 顾轶超, 李相成. 胆管癌免疫检查点抑制剂治疗研究进展[J]. 中华消化外科杂志, 2021, 20(2): 250-254. DOI: 10.3760/cma.j.cn115610-20210122-00037.
|
[40] |
PARDOLL DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer, 2012, 12(4): 252-264. DOI: 10.1038/nrc3239.
|
[41] |
ZHU Y, WANG XY, ZHANG Y, et al. Programmed death ligand 1 expression in human intrahepatic cholangiocarcinoma and its association with prognosis and CD8+ T-cell immune responses[J]. Cancer Manag Res, 2018, 10: 4113-4123. DOI: 10.2147/CMAR.S172719.
|
[42] |
LU JC, ZENG HY, SUN QM, et al. Distinct PD-L1/PD1 profiles and clinical implications in intrahepatic cholangiocarcinoma patients with different risk factors[J]. Theranostics, 2019, 9(16): 4678-4687. DOI: 10.7150/thno.36276.
|
[43] |
YE Y, ZHOU L, XIE X, et al. Interaction of B7-H1 on intrahepatic cholangiocarcinoma cells with PD-1 on tumor-infiltrating T cells as a mechanism of immune evasion[J]. J Surg Oncol, 2009, 100(6): 500-504. DOI: 10.1002/jso.21376.
|
[44] |
LE DT, DURHAM JN, SMITH KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349): 409-413. DOI: 10.1126/science.aan6733.
|
[45] |
ASAOKA Y, IJICHI H, KOIKE K. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015, 373(20): 1979. DOI: 10.1056/NEJMc1510353.
|
[46] |
KANG J, JEONG JH, HWANG HS, et al. Efficacy and safety of pembrolizumab in patients with refractory advanced biliary tract cancer: Tumor proportion score as a potential biomarker for response[J]. Cancer Res Treat, 2020, 52(2): 594-603. DOI: 10.4143/crt.2019.493.
|
[47] |
KIM RD, CHUNG V, ALESE OB, et al. A Phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer[J]. JAMA Oncol, 2020, 6(6): 888-894. DOI: 10.1001/jamaoncol.2020.0930.
|
[48] |
IOKA T, UENO M, OH DY, et al. Evaluation of safety and tolerability of durvalumab (D) with or without tremelimumab (T) in patients (pts) with biliary tract cancer (BTC)[J]. J Clin Oncol, 2019, 37(4_suppl): 387. DOI: 10.1200/JCO.2019.37.4_suppl.387
|
[49] |
ZHOU G, SPRENGERS D, MANCHAM S, et al. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules[J]. J Hepatol, 2019, 71(4): 753-762. DOI: 10.1016/j.jhep.2019.05.026.
|
[50] |
ABOU-ALFA GK, SAHAI V, HOLLEBECQUE A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study[J]. Lancet Oncol, 2020, 21(5): 671-684. DOI: 10.1016/S1470-2045(20)30109-1.
|
[51] |
ARKENAU HT, MARTIN-LIBERAL J, CALVO E, et al. Ramucirumab plus pembrolizumab in patients with previously treated advanced or metastatic biliary tract cancer: Nonrandomized, Open-Label, Phase I Trial (JVDF)[J]. Oncologist, 2018, 23(12): 1407-1407, e136. DOI: 10.1634/theoncologist.2018-0044.
|
[52] |
SMITH HJ, MCCAW TR, LONDONO AI, et al. The antitumor effects of entinostat in ovarian cancer require adaptive immunity[J]. Cancer, 2018, 124(24): 4657-4666. DOI: 10.1002/cncr.31761.
|