中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Developing the prediction model of esophagogastric variceal rebleeding in patients with liver cirrhosis based on artificial neural network

DOI: 10.3969/j.issn.1001-5256.2022.11.011
Research funding:

National Natural Science Foundation of China (81774234);

Beijing Municipal Science & Technology Commission (Z191100006619033)

More Information
  • Corresponding author: WANG Xianbo, wangxianbo638@163.com(ORCID: 0000-0002-3593-5741)
  • Received Date: 2022-03-07
  • Accepted Date: 2022-04-19
  • Published Date: 2022-11-20
  •   Objective  To develop an artificial neural network model to predict the risk of rebleeding within one year in cirrhotic patients with esophagogastric variceal bleeding.  Methods  We retrospectively collected 441 cirrhotic patients with esophagogastric variceal bleeding hospitalized at Beijing Ditan Hospital, Capital Medical University, from August 2008 to October 2017. The enrolled patients were followed up for one year. According to the primary endpoint which was rebleeding within one year, patients were divided into rebleeding (249 cases) and non-rebleeding (192 cases) groups. Fisher exact test or chi-square test were used for comparison of categorical data. Comparison of continuous data with normal distribution between groups was performed using t test, while comparison of non-normally distributed data was performed by Mann-Whitney U test. Cox univariate and multivariate regression were used to identify independent factors affecting rebleeding within one year in cirrhotic patients with esophagogastric variceal bleeding, and then an artificial neural network prediction model was constructed using identified factors. The predictive performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC).  Results  In total, 249 (56.5%) patients developed esophagogastric variceal rebleeding within one year. Cox multivariate regression showed INR (AHR=1.566, 95%CI: 1.023~2.398, P=0.039) and NLR (AHR=1.033, 95%CI: 1.009~1.058, P=0.006) were risk factors for 1-year rebleeding, while CHB (AHR=0.769, 95%CI: 0.597~0.991, P=0.042), Na (AHR=0.967, 95%CI: 0.936~0.999, P=0.044), endoscopic (AHR=0.829, 95%CI: 0.743~0.926, P=0.001) and surgical treatment (AHR=0.246, 95%CI: 0.120~0.504, P < 0.001) were protective factors. Using the above six independent influence factors, we successfully constructed an artificial neural network model (https://lixuan.me/annmodel/myg-v3/). The model's ability to predict 1-year rebleeding had an AUC of 0.782 (95%CI: 0.740-0.825), which was higher than 0.672 (95%CI: 0.622-0.722, P < 0.001) of Cox regression model, 0.557 (95%CI: 0.504-0.610, P < 0.001) of Child-Pugh and 0.562 (95%CI: 0.509-0.616, P < 0.001) of MELD scores.  Conclusion  The artificial neural network model has good individualized prediction performance and can be used as a risk assessment tool for esophagogastric variceal rebleeding.

     

  • [1]
    HOLSTER IL, TJWA ET, MOELKER A, et al. Covered transjugular intrahepatic portosystemic shunt versus endoscopic therapy+β-blocker for prevention of variceal rebleeding[J]. Hepatology, 2016, 63(2): 581-589. DOI: 10.1002/hep.28318.
    [2]
    Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Gastroenterology, Chinese Medical Association; Chinese Society of Endoscopy, Chinese Medical Association. Guidelines for the diagnosis and treatment of esophageal and gastric variceal bleeding in cirrhotic portal hypertension[J]. J Clin Hepatol, 2016, 32(2): 203-219. DOI: 10.3969/j.issn.1001-5256.2016.02.002.

    中华医学会肝病学分会, 中华医学会消化病学分会, 中华医学会内镜学分会. 肝硬化门静脉高压食管胃静脉曲张出血的防治指南[J]. 临床肝胆病杂志, 2016, 32(2): 203-219. DOI: 10.3969/j.issn.1001-5256.2016.02.002.
    [3]
    VERDA D, PARODI S, FERRARI E, et al. Analyzing gene expression data for pediatric and adult cancer diagnosis using logic learning machine and standard supervised methods[J]. BMC Bioinformatics, 2019, 20(Suppl 9): 390. DOI: 10.1186/s12859-019-2953-8.
    [4]
    CHI S, TIAN Y, WANG F, et al. A novel lifelong machine learning-based method to eliminate calibration drift in clinical prediction models[J]. Artif Intell Med, 2022, 125: 102256. DOI: 10.1016/j.artmed.2022.102256.
    [5]
    GARCIA-TSAO G, SANYAL AJ, GRACE ND, et al. Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis[J]. Hepatology, 2007, 46(3): 922-938. DOI: 10.1002/hep.21907.
    [6]
    PUGH RN, MURRAY-LYON IM, DAWSON JL, et al. Transection of the oesophagus for bleeding oesophageal varices[J]. Br J Surg, 1973, 60(8): 646-649. DOI: 10.1002/bjs.1800600817.
    [7]
    FONG TV, HUNG FC, CHIU KW, et al. Model for end-stage liver disease (MELD) score for predicting late esophageal varices rebleeding in cirrhotic patients[J]. Hepatogastroenterology, 2008, 55(84): 1055-1058.
    [8]
    DING RH, HU YM, LI XG, et al. Current status of prevention and treatment of esophagogastric variceal bleeding in cirrhotic portal hypertension patients in Ningxia region: a multicenter study[J]. Chin J Dig Surg, 2021, 20(10): 1078-1084. DOI: 10.3760/cma.j.cn115610-20210928-00464.

    丁荣华, 胡燕梅, 李小果, 等. 宁夏地区肝硬化门静脉高压食管胃底静脉曲张出血防治现状的多中心研究[J]. 中华消化外科杂志, 2021, 20(10): 1078-1084. DOI: 10.3760/cma.j.cn115610-20210928-00464.
    [9]
    DENG SM, ZHANG JX, QI Y, et al. Study on the application of endoscopic ligation in esophageal varices and the risk factors of postoperative rebleeding[J]. Chin J Med Offic, 2021, 49(6): 718-720. DOI: 10.16680/j.1671-3826.2021.06.43.

    邓水苗, 张嘉星, 齐晔, 等. 内镜下套扎术在食管静脉曲张中应用及其术后再出血高危因素研究[J]. 临床军医杂志, 2021, 49(6): 718-720. DOI: 10.16680/j.1671-3826.2021.06.43.
    [10]
    HAO Y, TAN P, ZHAO YG, et al. Antibiotic prophylaxis in gastroesophageal variceal bleeding: A prospective study[J]. J Pract Hepatol, 2012, 15(1): 29-31. DOI: 10.3969/j.issn.1672-5069.2012.01.010.

    郝勇, 谭萍, 赵亚刚, 等. 肝硬化食管胃底静脉曲张出血患者预防性抗菌治疗的前瞻性研究[J]. 实用肝脏病杂志, 2012, 15(1): 29-31. DOI: 10.3969/j.issn.1672-5069.2012.01.010.
    [11]
    YANG H, LIU YX, LI P, et al. Analysis of risk factors for early rebleeding from esophageal and gastric varices in patients with liver cirrhosis[J]. J Clin Hepatol, 2014, 30(6): 540-542. DOI: 10.3969/j.issn.1001-5256.2014.06.18.

    杨花, 刘云霞, 李鹏, 等. 肝硬化患者食管胃底静脉曲张破裂早期再出血的危险因素分析[J]. 临床肝胆病杂志, 2014, 30(6): 540-542. DOI: 10.3969/j.issn.1001-5256.2014.06.18.
    [12]
    LIU X, HE L, HAN J, et al. Association of neutrophil-lymphocyte ratio and T lymphocytes with the pathogenesis and progression of HBV-associated primary liver cancer[J]. PLoS One, 2017, 12(2): e0170605. DOI: 10.1371/journal.pone.0170605.
    [13]
    PLEVRIS JN, DHARIWAL A, ELTON RA, et al. The platelet count as a predictor of variceal hemorrhage in primary biliary cirrhosis[J]. Am J Gastroenterol, 1995, 90(6): 959-961.
    [14]
    CHEN LH, HU NZ, WANG YL. The value of MESO (MELD/Na index) scoring system in predicting prognosis of patients with cirrhosis[J]. J Clin Hepatol, 2011, 27(10): 1044-1046, 1054. DOI: 10.3969/j.issn.1001-5256.2011.10.008.

    陈丽红, 胡乃中, 王亚雷. 终末期肝病模型与血清钠比值在肝硬化患者预后判断中的价值[J]. 临床肝胆病杂志, 2011, 27(10): 1044-1046, 1054. DOI: 10.3969/j.issn.1001-5256.2011. 10.008.
    [15]
    HONG JB, LYU NH, WANG AJ, et al. Analysis of the risk factors for early rebleeding in oesophageal and gastric varices[J]. Chin J Dig, 2010, 30(11): 836-837. DOI: 10.3760/cma.j.issn.0254-1432.2010.11.013.

    洪军波, 吕农华, 汪安江, 等. 食管胃静脉曲张早期再出血的危险因素分析[J]. 中华消化杂志, 2010, 30(11): 836-837. DOI: 10.3760/cma.j.issn.0254-1432.2010.11.013.
    [16]
    HUO TI, LIN HC, WU JC, et al. Proposal of a modified Child-Turcotte-Pugh scoring system and comparison with the model for end-stage liver disease for outcome prediction in patients with cirrhosis[J]. Liver Transpl, 2006, 12(1): 65-71. DOI: 10.1002/lt.20560.
    [17]
    KAMATH PS, WIESNER RH, MALINCHOC M, et al. A model to predict survival in patients with end-stage liver disease[J]. Hepatology, 2001, 33(2): 464-470. DOI: 10.1053/jhep.2001.22172.
    [18]
    HEUMAN DM, ABOU-ASSI SG, HABIB A, et al. Persistent ascites and low serum sodium identify patients with cirrhosis and low MELD scores who are at high risk for early death[J]. Hepatology, 2004, 40(4): 802-810. DOI: 10.1002/hep.20405.
    [19]
    ANGELI P, WONG F, WATSON H, et al. Hyponatremia in cirrhosis: Results of a patient population survey[J]. Hepatology, 2006, 44(6): 1535-1542. DOI: 10.1002/hep.21412.
  • Cited by

    Periodical cited type(15)

    1. 陶熙,李宏韬. 胃镜下注射组织胶联合奥美拉唑治疗肝硬化并食管胃底静脉曲张破裂出血的临床效果. 吉林医学. 2025(02): 369-372 .
    2. 聂燕,王淑芳,栾哲,李丛勇,陈怡,赵纪伟,孙刚. 人工智能在肝硬化的早期无创诊断及风险预测的应用进展. 西部医学. 2025(02): 308-312 .
    3. 杨建波,黄小梅,何远静,张丽丽,罗玉君. 食管胃底静脉曲张破裂出血内镜治疗效果及1年内再出血风险预测模型的构建及验证. 四川大学学报(医学版). 2025(01): 284-290 .
    4. 潘雪梅,陈思芸,张丽君,谭淑艳. 基于质量三环理论构建肝硬化序贯治疗患者延续性护理评价指标体系. 安徽医学. 2024(03): 348-353 .
    5. 胡海远. 肝血流超声参数、血清IGFBP-3、miR-9a-5p水平联合检测在肝硬化胃底静脉曲张破裂出血患者再出血诊断中的效能. 中国民康医学. 2024(09): 139-141+145 .
    6. 赵忠乐,陈红伟,宋亚华. 肝硬化食管胃底静脉曲张破裂出血的影响因素及诊断价值分析. 现代消化及介入诊疗. 2024(03): 327-330 .
    7. 薛亚晶,卞兆连,陈建. 血清sCD163对食管胃静脉曲张内镜下治疗后再出血风险的预测价值. 检验医学与临床. 2024(15): 2172-2176 .
    8. 闭玉华,徐辉,乔丽娟,温建儒. 卡维地洛、普萘洛尔治疗肝硬化食管静脉曲张出血患者再出血的临床研究. 中国临床药理学杂志. 2024(18): 2645-2649 .
    9. 赵爽,朱玉轩,刘越,王静,李群,王明辉,董倩倩,范飞飞,刘晓峰. 肝硬化食管胃静脉曲张二级预防患者内镜治疗后再出血的影响因素分析. 临床肝胆病杂志. 2024(12): 2430-2440 . 本站查看
    10. 张静,吴丹丹,强丽,吴刚. 肝硬化患者首次静脉曲张破裂出血列线图预测模型的构建及验证. 四川医学. 2023(04): 372-379 .
    11. 宋亚华,薛琼,秦赟,蔡尚轩,张顺军. 不同内镜检查时间对肝硬化食管胃底静脉曲张破裂出血患者再出血及预后的影响. 现代消化及介入诊疗. 2023(03): 339-342 .
    12. 洪珊,陈旭,马佳丽,周玉玲,魏红山,李坪. 胃镜下黏合剂注射治疗食管胃静脉曲张出血的效果及术后再出血的危险因素分析. 中日友好医院学报. 2023(03): 163-166 .
    13. 陈岩,高巍,王竹,朱鹏飞,李国峰. 肝硬化食管静脉曲张程度与肝脾硬度及血流动力学的相关性. 中国当代医药. 2023(15): 34-36+40 .
    14. 马凌桔,姚文暾,张丽娜,苗雨,苏厚强,杨少奇. TIPS联合GCVE治疗肝硬化食管胃底静脉曲张出血的临床疗效. 宁夏医科大学学报. 2023(10): 1028-1032 .
    15. 刘樱,章惠娟,周战梅. CT门静脉成像对食管胃静脉曲张出血患者食管胃静脉曲张分型的鉴别价值. 实用医技杂志. 2023(12): 899-902 .

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (707) PDF downloads(376) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return