[1] |
RINELLA ME. Nonalcoholic fatty liver disease: a systematic review[J]. JAMA, 2015, 313(22): 2263-2273. DOI: 10.1001/jama.2015.5370.
|
[2] |
KENNEDY-MARTIN T, BAE JP, PACZKOWSKI R, et al. Health-related quality of life burden of nonalcoholic steatohepatitis: a robust pragmatic literature review[J]. J Patient Rep Outcomes, 2017, 2: 28. DOI: 10.1186/s41687-018-0052-7.
|
[3] |
DOWARD LC, BALP MM, TWISS J, et al. Development of a patient-reported outcome measure for non-alcoholic steatohepatitis (NASH-CHECK): Results of a qualitative study[J]. Patient, 2021, 14(5): 533-543. DOI: 10.1007/s40271-020-00485-w.
|
[4] |
GBD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(1): 88-106. DOI: 10.1016/S1474-4422(18)30403-4.
|
[5] |
WEINSTEIN G, ZELBER-SAGI S, PREIS SR, et al. Association of nonalcoholic fatty liver disease with lower brain volume in healthy middle-aged adults in the framingham study[J]. JAMA Neurol, 2018, 75(1): 97-104. DOI: 10.1001/jamaneurol.2017.3229.
|
[6] |
FILIPOVIĆ B, MARKOVIĆ O, ÐURIĆ V, et al. Cognitive changes and brain volume reduction in patients with nonalcoholic fatty liver disease[J]. Can J Gastroenterol Hepatol, 2018, 2018: 9638797. DOI: 10.1155/2018/9638797.
|
[7] |
CELIKBILEK A, CELIKBILEK M, BOZKURT G. Cognitive assessment of patients with nonalcoholic fatty liver disease[J]. Eur J Gastroenterol Hepatol, 2018, 30(8): 944-950. DOI: 10.1097/MEG.0000000000001131.
|
[8] |
TUTTOLOMONDO A, PETTA S, CASUCCIO A, et al. Reactive hyperemia index (RHI) and cognitive performance indexes are associated with histologic markers of liver disease in subjects with non-alcoholic fatty liver disease (NAFLD): a case control study[J]. Cardiovasc Diabetol, 2018, 17(1): 28. DOI: 10.1186/s12933-018-0670-7.
|
[9] |
WEINSTEIN G, DAVIS-PLOURDE K, HIMALI JJ, et al. Non-alcoholic fatty liver disease, liver fibrosis score and cognitive function in middle-aged adults: The Framingham study[J]. Liver Int, 2019, 39(9): 1713-1721. DOI: 10.1111/liv.14161.
|
[10] |
KANEKIYO T, BU G. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer's disease[J]. Front Aging Neurosci, 2014, 6: 93. DOI: 10.3389/fnagi.2014.00093.
|
[11] |
NUCERA S, RUGA S, CARDAMONE A, et al. MAFLD progression contributes to altered thalamus metabolism and brain structure[J]. Sci Rep, 2022, 12(1): 1207. DOI: 10.1038/s41598-022-05228-5.
|
[12] |
ALBANESE E, DAVIS B, JONSSON PV, et al. Overweight and obesity in midlife and brain structure and dementia 26 years later: The AGES-Reykjavik study[J]. Am J Epidemiol, 2015, 181(9): 672-679. DOI: 10.1093/aje/kwu331.
|
[13] |
MANTOVANI A, CSERMELY A, PETRACCA G, et al. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: an updated systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2021, 6(11): 903-913. DOI: 10.1016/S2468-1253(21)00308-3.
|
[14] |
ONI ET, AGATSTON AS, BLAHA MJ, et al. A systematic review: burden and severity of subclinical cardiovascular disease among those with nonalcoholic fatty liver; should we care?[J]. Atherosclerosis, 2013, 230(2): 258-267. DOI: 10.1016/j.atherosclerosis.2013.07.052.
|
[15] |
KLEINRIDDERS A, FERRIS HA, CAI W, et al. Insulin action in brain regulates systemic metabolism and brain function[J]. Diabetes, 2014, 63(7): 2232-2243. DOI: 10.2337/db14-0568.
|
[16] |
ARNOLD SE, ARVANITAKIS Z, MACAULEY-RAMBACH SL, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums[J]. Nat Rev Neurol, 2018, 14(3): 168-181. DOI: 10.1038/nrneurol.2017.185.
|
[17] |
van ELDEREN SG, de ROOS A, de CRAEN AJ, et al. Progression of brain atrophy and cognitive decline in diabetes mellitus: a 3-year follow-up[J]. Neurology, 2010, 75(11): 997-1002. DOI: 10.1212/WNL.0b013e3181f25f06.
|
[18] |
ZHANG T, SHAW M, CHERBUIN N. Association between type 2 diabetes mellitus and brain atrophy: A Meta-analysis[J]. Diabetes Metab J, 2022. DOI: 10.4093/dmj.2021.0189.[Onlineaheadofprint]
|
[19] |
COBLEY JN, FIORELLO ML, BAILEY DM. 13 reasons why the brain is susceptible to oxidative stress[J]. Redox Biol, 2018, 15: 490-503. DOI: 10.1016/j.redox.2018.01.008.
|
[20] |
BANKS WA, RHEA EM. The blood-brain barrier, oxidative stress, and insulin resistance[J]. Antioxidants (Basel), 2021, 10(11): 1695. DOI: 10.3390/antiox10111695.
|
[21] |
QIAO B, ZHOU Y, MA WJ, et al. Intestinal microflora imbalance in non-alcoholic fatty liver disease[J/CD]. Chin J Liver Dis: Electronic Edition, 2020, 12(4): 29-33. DOI: 10.3969/j.issn.1674-7380.2020.04.005.
乔兵, 周永, 马文洁, 等. 肠道菌群失调在非酒精性脂肪性肝病中研究进展[J/CD]. 中国肝脏病杂志(电子版), 2020, 12(4): 29-33. DOI: 10.3969/j.issn.1674-7380.2020.04.005.
|
[22] |
ARON-WISNEWSKY J, VIGLIOTTI C, WITJES J, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(5): 279-297. DOI: 10.1038/s41575-020-0269-9.
|
[23] |
BRUCE-KELLER AJ, SALBAUM JM, BERTHOUD HR. Harnessing gut microbes for mental health: Getting from here to there[J]. Biol Psychiatry, 2018, 83(3): 214-223. DOI: 10.1016/j.biopsych.2017.08.014.
|
[24] |
DING JH, JIN Z, YANG XX, et al. Role of gut microbiota via the gut-liver-brain axis in digestive diseases[J]. World J Gastroenterol, 2020, 26(40): 6141-6162. DOI: 10.3748/wjg.v26.i40.6141.
|
[25] |
SARKAR A, LEHTO SM, HARTY S, et al. Psychobiotics and the manipulation of bacteria-gut-brain signals[J]. Trends Neurosci, 2016, 39(11): 763-781. DOI: 10.1016/j.tins.2016.09.002.
|
[26] |
LONG-SMITH C, O'RIORDAN K J, CLARKE G, et al. Microbiota-gut-brain axis: New therapeutic opportunities[J]. Annu Rev Pharmacol Toxicol, 2020, 60: 477-502. DOI: 10.1146/annurev-pharmtox-010919-023628.
|
[27] |
SWAIN MG, JONES D. Fatigue in chronic liver disease: New insights and therapeutic approaches[J]. Liver Int, 2019, 39(1): 6-19. DOI: 10.1111/liv.13919.
|
[28] |
GHAREEB DA, HAFEZ HS, HUSSIEN HM, et al. Non-alcoholic fatty liver induces insulin resistance and metabolic disorders with development of brain damage and dysfunction[J]. Metab Brain Dis, 2011, 26(4): 253-267. DOI: 10.1007/s11011-011-9261-y.
|
[29] |
BALZANO T, FORTEZA J, MOLINA P, et al. The cerebellum of patients with steatohepatitis shows lymphocyte infiltration, microglial activation and loss of Purkinje and granular neurons[J]. Sci Rep, 2018, 8(1): 3004. DOI: 10.1038/s41598-018-21399-6.
|
[30] |
VIROVIĆ-JUKI ĆL, STOJSAVLJEVI Ć -SHAPESKI S, FORGA ČJ, et al. Non-alcoholic fatty liver disease-a procoagulant condition?[J]. Croat Med J, 2021, 62(1): 25-33.
|
[31] |
ÖNNERHAG K, NILSSON PM, LINDGREN S. Increased risk of cirrhosis and hepatocellular cancer during long-term follow-up of patients with biopsy-proven NAFLD[J]. Scand J Gastroenterol, 2014, 49(9): 1111-1118. DOI: 10.3109/00365521.2014.934911.
|
[32] |
YOUNOSSI ZM, OTGONSUREN M, HENRY L, et al. Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009[J]. Hepatology, 2015, 62(6): 1723-1730. DOI: 10.1002/hep.28123.
|
[33] |
de CHIARA F, HEEBØLL S, MARRONE G, et al. Urea cycle dysregulation in non-alcoholic fatty liver disease[J]. J Hepatol, 2018, 69(4): 905-915. DOI: 10.1016/j.jhep.2018.06.023.
|
[34] |
HIGARZA SG, ARBOLEYA S, GUEIMONDE M, et al. Neurobehavioral dysfunction in non-alcoholic steatohepatitis is associated with hyperammonemia, gut dysbiosis, and metabolic and functional brain regional deficits[J]. PLoS One, 2019, 14(9): e0223019. DOI: 10.1371/journal.pone.0223019.
|
[35] |
LEBOSSÉ F, GUDD C, TUNC E, et al. CD8+T cells from patients with cirrhosis display a phenotype that may contribute to cirrhosis-associated immune dysfunction[J]. EBioMedicine, 2019, 49: 258-268. DOI: 10.1016/j.ebiom.2019.10.011.
|
[36] |
FITZPATRICK Z, FRAZER G, FERRO A, et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses[J]. Nature, 2020, 587(7834): 472-476. DOI: 10.1038/s41586-020-2886-4.
|
[37] |
AL-ASMAKH M, HEDIN L. Microbiota and the control of blood-tissue barriers[J]. Tissue Barriers, 2015, 3(3): e1039691. DOI: 10.1080/21688370.2015.1039691.
|
[38] |
KRONSTEN VT, TRANAH TH, PARIANTE C, et al. Gut-derived systemic inflammation as a driver of depression in chronic liver disease[J]. J Hepatol, 2022, 76(3): 665-680. DOI: 10.1016/j.jhep.2021.11.008.
|