[1] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
|
[2] |
VOGEL A, SABOROWSKI A. Current strategies for the treatment of intermediate and advanced hepatocellular carcinoma[J]. Cancer Treat Rev, 2020, 82: 101946. DOI: 10.1016/j.ctrv.2019.101946.
|
[3] |
LI XY, SHEN Y, ZHANG L, et al. Understanding initiation and progression of hepatocellular carcinoma through single cell sequencing[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(3): 188720. DOI: 10.1016/j.bbcan.2022.188720.
|
[4] |
TOUGH DF, RIOJA I, MODIS LK, et al. Epigenetic regulation of T cell memory: Recalling therapeutic implications[J]. Trends Immunol, 2020, 41(1): 29-45. DOI: 10.1016/j.it.2019.11.008.
|
[5] |
RAMZAN M, STURM N, DECAENS T, et al. Liver-infiltrating CD8+lymphocytes as prognostic factor for tumour recurrence in hepatitis C virus-related hepatocellular carcinoma[J]. Liver Int, 2016, 36(3): 434-444. DOI: 10.1111/liv.12927.
|
[6] |
KHAN O, GILES JR, MCDONALD S, et al. TOX transcriptionally and epigenetically programs CD8+T cell exhaustion[J]. Nature, 2019, 571(7764): 211-218. DOI: 10.1038/s41586-019-1325-x.
|
[7] |
BROWN ZJ, FU Q, MA C, et al. Carnitine palmitoyl transferase gene upregulation by linoleic acid induces CD4+T cell apoptosis promoting HCC development[J]. Cell Death Dis, 2018, 9(6): 620. DOI: 10.1038/s41419-018-0687-6.
|
[8] |
DUTTA A, VENKATA GANESH H, LOVE PE. New insights into epigenetic regulation of T cell differentiation[J]. Cells, 2021, 10(12): 3459. DOI: 10.3390/cells10123459.
|
[9] |
QUEZADA SA, SIMPSON TR, PEGGS KS, et al. Tumor-reactive CD4+T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts[J]. J Exp Med, 2010, 207(3): 637-650. DOI: 10.1084/jem.20091918.
|
[10] |
HUANG Y, LIAO H, ZHANG Y, et al. Prognostic value of tumor-infiltrating FoxP3+T cells in gastrointestinal cancers: a meta analysis[J]. PLoS One, 2014, 9(5): e94376. DOI: 10.1371/journal.pone.0094376.
|
[11] |
ZHANG H, JIANG Z, ZHANG L. Dual effect of T helper cell 17 (Th17) and regulatory T cell (Treg) in liver pathological process: From occurrence to end stage of disease[J]. Int Immunopharmacol, 2019, 69: 50-59. DOI: 10.1016/j.intimp.2019.01.005.
|
[12] |
LANGHANS B, NISCHALKE HD, KRÄMER B, et al. Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2019, 68(12): 2055-2066. DOI: 10.1007/s00262-019-02427-4.
|
[13] |
HAN Y, CHEN Z, YANG Y, et al. Human CD14+CTLA-4+regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2, 3-dioxygenase production in hepatocellular carcinoma[J]. Hepatology, 2014, 59(2): 567-579. DOI: 10.1002/hep.26694.
|
[14] |
ZHOU ZJ, XIN HY, LI J, et al. Intratumoral plasmacytoid dendritic cells as a poor prognostic factor for hepatocellular carcinoma following curative resection[J]. Cancer Immunol Immunother, 2019, 68(8): 1223-1233. DOI: 10.1007/s00262-019-02355-3.
|
[15] |
CHEN X, DU Y, HU Q, et al. Tumor-derived CD4+CD25+regulatory T cells inhibit dendritic cells function by CTLA-4[J]. Pathol Res Pract, 2017, 213(3): 245-249. DOI: 10.1016/j.prp.2016.12.008.
|
[16] |
ZHOU G, SPRENGERS D, BOOR PPC, et al. Antibodies against immune checkpoint molecules restore functions of tumor-infiltrating T cells in hepatocellular carcinomas[J]. Gastroenterology, 2017, 153(4): 1107-1119. e10. DOI: 10.1053/j.gastro.2017.06.017.
|
[17] |
YU Z, LI Y, LI Y, et al. Bufalin stimulates antitumor immune response by driving tumor-infiltrating macrophage toward M1 phenotype in hepatocellular carcinoma[J]. J Immunother Cancer, 2022, 10(5): e004297. DOI: 10.1136/jitc-2021-004297.
|
[18] |
LI X, YAO W, YUAN Y, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma[J]. Gut, 2017, 66(1): 157-167. DOI: 10.1136/gutjnl-2015-310514.
|
[19] |
PU J, XU Z, NIAN J, et al. M2 macrophage-derived extracellular vesicles facilitate CD8+T cell exhaustion in hepatocellular carcinoma via the miR-21-5p/YOD1/YAP/β-catenin pathway[J]. Cell Death Discov, 2021, 7(1): 182. DOI: 10.1038/s41420-021-00556-3.
|
[20] |
WU Q, ZHOU W, YIN S, et al. Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer[J]. Hepatology, 2019, 70(1): 198-214. DOI: 10.1002/hep.30593.
|
[21] |
PERANZONI E, LEMOINE J, VIMEUX L, et al. Macrophages impede CD8+T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment[J]. Proc Natl Acad Sci U S A, 2018, 115(17): E4041-E4050. DOI: 10.1073/pnas.1720948115.
|
[22] |
WANG N, TAN HY, LU Y, et al. PIWIL1 governs the crosstalk of cancer cell metabolism and immunosuppressive microenvironment in hepatocellular carcinoma[J]. Signal Transduct Target Ther, 2021, 6(1): 86. DOI: 10.1038/s41392-021-00485-8.
|
[23] |
HSIEH CC, HUNG CH, CHIANG M, et al. Hepatic stellate cells enhance liver cancer progression by inducing myeloid-derived suppressor cells through interleukin-6 signaling[J]. Int J Mol Sci, 2019, 20(20): 5079. DOI: 10.3390/ijms20205079.
|
[24] |
DYSTHE M, PARIHAR R. Myeloid-derived suppressor cells in the tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1224: 117-140. DOI: 10.1007/978-3-030-35723-8_8.
|
[25] |
TRAILIN A, ČERVENKOVÁ L, AMBROZKIEWICZ F, et al. T-and B-cells in the inner invasive margin of hepatocellular carcinoma after resection associate with favorable prognosis[J]. Cancers (Basel), 2022, 14(3): 604. DOI: 10.3390/cancers14030604.
|
[26] |
SHI JY, GAO Q, WANG ZC, et al. Margin-infiltrating CD20+B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma[J]. Clin Cancer Res, 2013, 19(21): 5994-6005. DOI: 10.1158/1078-0432.CCR-12-3497.
|
[27] |
GARNELO M, TAN A, HER Z, et al. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma[J]. Gut, 2017, 66(2): 342-351. DOI: 10.1136/gutjnl-2015-310814.
|
[28] |
FENG Y, LIU L, LI J, et al. Systematic characterization of the tumor microenvironment in Chinese patients with hepatocellular carcinoma highlights intratumoral B cells as a potential immunotherapy target[J]. Oncol Rep, 2022, 47(2): 38. DOI: 10.3892/or.2021.8249.
|
[29] |
XUE H, LIN F, TAN H, et al. Overrepresentation of IL-10-expressing B cells suppresses cytotoxic CD4+T cell activity in HBV-induced hepatocellular carcinoma[J]. PLoS One, 2016, 11(5): e0154815. DOI: 10.1371/journal.pone.0154815.
|
[30] |
RUIZ DE GALARRETA M, BRESNAHAN E, MOLINA-SÁNCHEZ P, et al. β-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma[J]. Cancer Discov, 2019, 9(8): 1124-1141. DOI: 10.1158/2159-8290.CD-19-0074.
|
[31] |
SCHINZARI V, TIMPERI E, PECORA G, et al. Wnt3a/β-catenin signaling conditions differentiation of partially exhausted T-effector cells in human cancers[J]. Cancer Immunol Res, 2018, 6(8): 941-952. DOI: 10.1158/2326-6066.CIR-17-0712.
|
[32] |
ZHU GQ, WANG Y, WANG B, et al. Targeting HNRNPM inhibits cancer stemness and enhances antitumor immunity in Wnt-activated hepatocellular carcinoma[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(5): 1413-1447. DOI: 10.1016/j.jcmgh.2022.02.006.
|
[33] |
TAURIELLO DVF, SANCHO E, BATLLE E. Overcoming TGFβ-mediated immune evasion in cancer[J]. Nat Rev Cancer, 2022, 22(1): 25-44. DOI: 10.1038/s41568-021-00413-6.
|
[34] |
BATLLE E, MASSAGUÉ J. Transforming growth factor-β signaling in immunity and cancer[J]. Immunity, 2019, 50(4): 924-940. DOI: 10.1016/j.immuni.2019.03.024.
|
[35] |
DIMELOE S, GUBSER P, LOELIGER J, et al. Tumor-derived TGF-β inhibits mitochondrial respiration to suppress IFN-γ production by human CD4+T cells[J]. Sci Signal, 2019, 12(599): eaav3334. DOI: 10.1126/scisignal.aav3334.
|
[36] |
WANG X, HE Q, SHEN H, et al. TOX promotes the exhaustion of antitumor CD8+T cells by preventing PD1 degradation in hepatocellular carcinoma[J]. J Hepatol, 2019, 71(4): 731-741. DOI: 10.1016/j.jhep.2019.05.015.
|
[37] |
DITURI F, MANCARELLA S, SERINO G, et al. Direct and indirect effect of TGFβ on treg transendothelial recruitment in HCC tissue microenvironment[J]. Int J Mol Sci, 2021, 22(21): 11765. DOI: 10.3390/ijms222111765.
|
[38] |
HE G, YU GY, TEMKIN V, et al. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation[J]. Cancer Cell, 2010, 17(3): 286-297. DOI: 10.1016/j.ccr.2009.12.048.
|
[39] |
CHENG JT, DENG YN, YI HM, et al. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation[J]. Oncogenesis, 2016, 5(2): e198. DOI: 10.1038/oncsis.2016.7.
|
[40] |
MIRLEKAR B, PYLAYEVA-GUPTA Y. IL-12 family cytokines in cancer and immunotherapy[J]. Cancers (Basel), 2021, 13(2): 167. DOI: 10.3390/cancers13020167.
|
[41] |
NISHIDA N. Clinical implications of the dual blockade of the PD-1/PD-L1 and vascular endothelial growth factor axes in the treatment of hepatocellular carcinoma[J]. Hepatobiliary Surg Nutr, 2020, 9(5): 640-643. DOI: 10.21037/hbsn.2019.10.18.
|
[42] |
EL-KHOUEIRY AB, SANGRO B, YAU T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389(10088): 2492-2502. DOI: 10.1016/S0140-6736(17)31046-2.
|
[43] |
AGDASHIAN D, ELGINDI M, XIE C, et al. The effect of anti-CTLA4 treatment on peripheral and intra-tumoral T cells in patients with hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2019, 68(4): 599-608. DOI: 10.1007/s00262-019-02299-8.
|
[44] |
QIN S, REN Z, MENG Z, et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial[J]. Lancet Oncol, 2020, 21(4): 571-580. DOI: 10.1016/S1470-2045(20)30011-5.
|
[45] |
YAU T, KANG YK, KIM TY, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the CheckMate 040 randomized clinical trial[J]. JAMA Oncol, 2020, 6(11): e204564. DOI: 10.1001/jamaoncol.2020.4564.
|
[46] |
GORABI AM, HAJIGHASEMI S, SATHYAPALAN T, et al. Cell transfer-based immunotherapies in cancer: A review[J]. IUBMB Life, 2020, 72(4): 790-800. DOI: 10.1002/iub.2180.
|
[47] |
LEE JH, LEE JH, LIM YS, et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma[J]. Gastroenterology, 2015, 148(7): 1383-1391. e6. DOI: 10.1053/j.gastro.2015.02.055.
|
[48] |
SZOOR A, VAIDYA A, VELASQUEZ MP, et al. T cell-activating mesenchymal stem cells as a biotherapeutic for HCC[J]. Mol Ther Oncolytics, 2017, 6: 69-79. DOI: 10.1016/j.omto.2017.07.002.
|
[49] |
LI J, HUANG S, ZHOU Z, et al. Exosomes derived from rAAV/AFP-transfected dendritic cells elicit specific T cell-mediated immune responses against hepatocellular carcinoma[J]. Cancer Manag Res, 2018, 10: 4945-4957. DOI: 10.2147/CMAR.S178326.
|
[50] |
TANIGUCHI M, MIZUNO S, YOSHIKAWA T, et al. Peptide vaccine as an adjuvant therapy for glypican-3-positive hepatocellular carcinoma induces peptide-specific CTLs and improves long prognosis[J]. Cancer Sci, 2020, 111(8): 2747-2759. DOI: 10.1111/cas.14497.
|