[1] |
IANNUZZI JP, KING JA, LEONG JH, et al. Global incidence of acute pancreatitis is increasing over time: A systematic review and meta-analysis[J]. Gastroenterology, 2022, 162(1): 122-134. DOI: 10.1053/j.gastro.2021.09.043.
|
[2] |
XIAO AY, TAN ML, WU LM, et al. Global incidence and mortality of pancreatic diseases: a systematic review, meta-analysis, and meta-regression of population-based cohort studies[J]. Lancet Gastroenterol Hepatol, 2016, 1(1): 45-55. DOI: 10.1016/S2468-1253(16)30004-8.
|
[3] |
HALONEN KI, PETTILÄ V, LEPPÄNIEMI AK, et al. Multiple organ dysfunction associated with severe acute pancreatitis[J]. Crit Care Med, 2002, 30(6): 1274-1279. DOI: 10.1097/00003246-200206000-00019.
|
[4] |
JIANG X, YAN YF, ZHONG R, et al. Clinical features of biliary acute pancreatitis versus hypertriglyceridemic acute pancreatitis[J]. J Clin Hepatol, 2020, 36(9): 2050-2055. DOI: 10.3969/j.issn.1001-5256.2020.09.028.
蒋鑫, 严永峰, 钟瑞, 等. 胆源性急性胰腺炎与高甘油三酯血症性急性胰腺炎临床特点对比分析[J]. 临床肝胆病杂志, 2020, 36(9): 2050-2055. DOI: 10.3969/j.issn.1001-5256.2020.09.028.
|
[5] |
EL SEBAE GK, MALATOS JM, CONE ME, et al. Single-cell murine genetic fate mapping reveals bipotential hepatoblasts and novel multi-organ endoderm progenitors[J]. Development, 2018, 145(19): dev168658. DOI: 10.1242/dev.168658.
|
[6] |
COFFEY JC, WALSH D, BYRNES KG, et al. Mesentery - a 'New' organ[J]. Emerg Top Life Sci, 2020, 4(2): 191-206. DOI: 10.1042/ETLS20200006.
|
[7] |
GUI Y, SUN JJ, YANG YH, et al. Effect of bilateral greater splanchnic nerve transection on hepatic injury in dogs with acute necrotizing pancreatitis[J]. J Clin Hepatol, 2018, 34(8): 1733-1739. DOI: 10.3969/j.issn.1001-5256.2018.08.028.
桂洋, 孙君军, 杨延辉, 等. 内脏大神经切断对犬急性坏死性胰腺炎并发肝损伤的影响[J]. 临床肝胆病杂志, 2018, 34(8): 1733-1739. DOI: 10.3969/j.issn.1001-5256.2018.08.028.
|
[8] |
WU J, ZHANG L, SHI J, et al. Macrophage phenotypic switch orchestrates the inflammation and repair/regeneration following acute pancreatitis injury[J]. EBioMedicine, 2020, 58: 102920. DOI: 10.1016/j.ebiom.2020.102920.
|
[9] |
YANG Y, HAN CY, GUAN QB, et al. Interleukin-17-mediated inflammation promotes nonalcoholic fatty liver disease in mice with regulation of M1-type macrophage polarization[J]. Chin J Hepatol, 2018, 26(12): 916-921. DOI: 10.3760/cma.j.issn.1007-3418.2018.12.008.
杨毅, 韩晨阳, 官俏兵, 等. 白细胞介素17通过促进巨噬细胞M1型极化调控小鼠非酒精性脂肪性肝病组织炎症反应的机制[J]. 中华肝脏病杂志, 2018, 26(12): 916-921. DOI: 10.3760/cma.j.issn.1007-3418.2018.12.008.
|
[10] |
LEE HC, LIAO CC, DAY YJ, et al. IL-17 deficiency attenuates acetaminophen-induced hepatotoxicity in mice[J]. Toxicol Lett, 2018, 292: 20-30. DOI: 10.1016/j.toxlet.2018.04.021.
|
[11] |
REX D, AGARWAL N, PRASAD T, et al. A comprehensive pathway map of IL-18-mediated signalling[J]. J Cell Commun Signal, 2020, 14(2): 257-266. DOI: 10.1007/s12079-019-00544-4.
|
[12] |
KANY S, VOLLRATH JT, RELJA B. Cytokines in inflammatory disease[J]. Int J Mol Sci, 2019, 20(23): 6008. DOI: 10.3390/ijms20236008.
|
[13] |
SHI C, YANG H, ZHANG Z. Involvement of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 inflammasome in the pathogenesis of liver diseases[J]. Front Cell Dev Biol, 2020, 8: 139. DOI: 10.3389/fcell.2020.00139.
|
[14] |
XU Y, TANG Y, LU J, et al. PINK1-mediated mitophagy protects against hepatic ischemia/reperfusion injury by restraining NLRP3 inflammasome activation[J]. Free Radic Biol Med, 2020, 160: 871-886. DOI: 10.1016/j.freeradbiomed.2020.09.015.
|
[15] |
ZHANG H, NEUHÖFER P, SONG L, et al. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality[J]. J Clin Invest, 2013, 123(3): 1019-1031. DOI: 10.1172/JCI64931.
|
[16] |
LESINA M, WÖRMANN SM, NEUHÖFER P, et al. Interleukin-6 in inflammatory and malignant diseases of the pancreas[J]. Semin Immunol, 2014, 26(1): 80-87. DOI: 10.1016/j.smim.2014.01.002.
|
[17] |
TIEGS G, HORST AK. TNF in the liver: targeting a central player in inflammation[J]. Semin Immunopathol, 2022, 44(4): 445-459. DOI: 10.1007/s00281-022-00910-2.
|
[18] |
WANG B, ZHAO KL, HU WJ, et al. Macrophage migration inhibitor promoted the intrahepatic bile duct injury in rats with severe acute pancreatitis[J]. Dig Dis Sci, 2019, 64(3): 759-772. DOI: 10.1007/s10620-018-5379-7.
|
[19] |
QUECK A, BODE H, USCHNER FE, et al. Systemic MCP-1 levels derive mainly from injured liver and are associated with complications in cirrhosis[J]. Front Immunol, 2020, 11: 354. DOI: 10.3389/fimmu.2020.00354.
|
[20] |
AMPOFO E, BERG JJ, MENGER MD, et al. Maslinic acid alleviates ischemia/reperfusion-induced inflammation by downregulation of NFκB-mediated adhesion molecule expression[J]. Sci Rep, 2019, 9(1): 6119. DOI: 10.1038/s41598-019-42465-7.
|
[21] |
QIN CC, LIU YN, HU Y, et al. Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury[J]. World J Gastroenterol, 2017, 23(17): 3043-3052. DOI: 10.3748/wjg.v23.i17.3043.
|
[22] |
LI Z, LIU T, FENG Y, et al. PPARγ alleviates sepsis-induced liver injury by inhibiting hepatocyte pyroptosis via inhibition of the ROS/TXNIP/NLRP3 signaling pathway[J]. Oxid Med Cell Longev, 2022, 2022: 1269747. DOI: 10.1155/2022/1269747.
|
[23] |
LI M, ZHANG X, WANG B, et al. Effect of JAK2/STAT3 signaling pathway on liver injury associated with severe acute pancreatitis in rats[J]. Exp Ther Med, 2018, 16(3): 2013-2021. DOI: 10.3892/etm.2018.6433.
|
[24] |
XU RH, XIU L, ZHANG YL, et al. Probiotic and hepatoprotective activity of lactobacillus isolated from Mongolian camel milk products[J]. Benef Microbes, 2019, 10(6): 699-710. DOI: 10.3920/BM2018.0131.
|
[25] |
HOQUE R, FAROOQ A, GHANI A, et al. Lactate reduces liver and pancreatic injury in Toll-like receptor - and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity[J]. Gastroenterology, 2014, 146(7): 1763-1774. DOI: 10.1053/j.gastro.2014.03.014.
|
[26] |
SENDLER M, van den BRANDT C, GLAUBITZ J, et al. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis[J]. Gastroenterology, 2020, 158(1): 253-269. DOI: 10.1053/j.gastro.2019.09.040.
|
[27] |
BICZO G, VEGH ET, SHALBUEVA N, et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models[J]. Gastroenterology, 2018, 154(3): 689-703. DOI: 10.1053/j.gastro.2017.10.012.
|
[28] |
CHEN W, ZAI W, FAN J, et al. Interleukin-22 drives a metabolic adaptive reprogramming to maintain mitochondrial fitness and treat liver injury[J]. Theranostics, 2020, 10(13): 5879-5894. DOI: 10.7150/thno.43894.
|
[29] |
YIN T, SHI Q, GUO WY, et al. Anti-oxidative stress role of hydrogen-rich saline and its effect of mitogen-activated protein kinases pathway on hepatic injury of severe acute pancreatitis[J]. Chin J Exp Surg, 2015, 32(1): 33-36. DOI: 10.3760/cma.j.issn.1001-9030.2015.01.012.
殷涛, 石乔, 郭闻一, 等. 氢饱和生理盐水在重症急性胰腺炎肝损伤中的抗氧化应激作用及对丝裂原活化蛋白激酶通路的影响[J]. 中华实验外科杂志, 2015, 32(1): 33-36. DOI: 10.3760/cma.j.issn.1001-9030.2015.01.012.
|
[30] |
ZHANG FH, SUN YH, FAN KL, et al. Protective effects of heme oxygenase-1 against severe acute pancreatitis via inhibition of tumor necrosis factor-α and augmentation of interleukin-10[J]. BMC Gastroenterol, 2017, 17(1): 100. DOI: 10.1186/s12876-017-0651-4.
|
[31] |
LIANG KJ, WOODARD KT, WEAVER MA, et al. AAV-Nrf2 promotes protection and recovery in animal models of oxidative stress[J]. Mol Ther, 2017, 25(3): 765-779. DOI: 10.1016/j.ymthe.2016.12.016.
|
[32] |
WERNER J, FERNÁNDEZ-DEL CASTILLO C, RIVERA JA, et al. On the protective mechanisms of nitric oxide in acute pancreatitis[J]. Gut, 1998, 43(3): 401-407. DOI: 10.1136/gut.43.3.401.
|
[33] |
FENO S, BUTERA G, VECELLIO REANE D, et al. Crosstalk between calcium and ROS in pathophysiological conditions[J]. Oxid Med Cell Longev, 2019, 2019: 9324018. DOI: 10.1155/2019/9324018.
|
[34] |
TURKYILMAZ S, CEKIC AB, USTA A, et al. Ethyl pyruvate treatment ameliorates pancreatic damage: evidence from a rat model of acute necrotizing pancreatitis[J]. Arch Med Sci, 2019, 15(1): 232-239. DOI: 10.5114/aoms.2017.65231.
|
[35] |
D'HAESE J, WERNER J. Translational research for acute pancreatitis - which results have really influenced our therapy?[J]. Visc Med, 2018, 34(6): 436-438. DOI: 10.1159/000493890.
|
[36] |
KE L, NI HB, TONG ZH, et al. Efficacy of continuous regional arterial infusion with low-molecular-weight heparin for severe acute pancreatitis in a porcine model[J]. Shock, 2014, 41(5): 443-448. DOI: 10.1097/SHK.0000000000000129.
|
[37] |
KEITEL V, HÄUSSINGER D. Role of TGR5 (GPBAR1) in liver disease[J]. Semin Liver Dis, 2018, 38(4): 333-339. DOI: 10.1055/s-0038-1669940.
|
[38] |
LI B, YANG N, LI C, et al. INT-777, a bile acid receptor agonist, extenuates pancreatic acinar cells necrosis in a mouse model of acute pancreatitis[J]. Biochem Biophys Res Commun, 2018, 503(1): 38-44. DOI: 10.1016/j.bbrc.2018.05.120.
|
[39] |
van den BERG FF, HUGENHOLTZ F, BOERMEESTER MA, et al. Spatioregional assessment of the gut microbiota in experimental necrotizing pancreatitis[J]. BJS Open, 2021, 5(5): zrab061. DOI: 10.1093/bjsopen/zrab061.
|
[40] |
ZHAO HB, JIA L, YAN QQ, et al. Effect of clostridium butyricum and butyrate on intestinal barrier functions: study of a rat model of severe acute pancreatitis with intra-abdominal hypertension[J]. Front Physiol, 2020, 11: 561061. DOI: 10.3389/fphys.2020.561061.
|
[41] |
PATEL BK, PATEL KH, BHATIA M, et al. Gut microbiome in acute pancreatitis: A review based on current literature[J]. World J Gastroenterol, 2021, 27(30): 5019-5036. DOI: 10.3748/wjg.v27.i30.5019.
|
[42] |
JIN M, ZHANG H, WU M, et al. Colonic interleukin-22 protects intestinal mucosal barrier and microbiota abundance in severe acute pancreatitis[J]. FASEB J, 2022, 36(3): e22174. DOI: 10.1096/fj.202101371R.
|
[43] |
BAI J, BAI J, YANG M. Interleukin-22 attenuates acute pancreatitis-associated intestinal mucosa injury in mice via STAT3 activation[J]. Gut Liver, 2021, 15(5): 771-781. DOI: 10.5009/gnl20210.
|