[1] |
CASULLERAS M, ZHANG IW, LÓPEZ-VICARIO C, et al. Leukocytes, systemic inflammation and immunopathology in acute-on-chronic liver failure[J]. Cells, 2020, 9(12): 2632. DOI: 10.3390/cells9122632.
|
[2] |
ALBILLOS A, MARTIN-MATEOS R, van der MERWE S, et al. Cirrhosis-associated immune dysfunction[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(2): 112-134. DOI: 10.1038/s41575-021-00520-7.
|
[3] |
ALBILLOS A, de GOTTARDI A, RESCIGNO M. The gut-liver axis in liver disease: Pathophysiological basis for therapy[J]. J Hepatol, 2020, 72(3): 558-577. DOI: 10.1016/j.jhep.2019.10.003.
|
[4] |
FERNÁNDEZ J, ACEVEDO J, WIEST R, et al. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis[J]. Gut, 2018, 67(10): 1870-1880. DOI: 10.1136/gutjnl-2017-314240.
|
[5] |
PIANO S, SINGH V, CARACENI P, et al. Epidemiology and effects of bacterial infections in patients with cirrhosis worldwide[J]. Gastroenterology, 2019, 156(5): 1368-1380. e10. DOI: 10.1053/j.gastro.2018.12.005.
|
[6] |
CLÀRIA J, STAUBER RE, COENRAAD MJ, et al. Systemic inflammation in decompensated cirrhosis: Characterization and role in acute-on-chronic liver failure[J]. Hepatology, 2016, 64(4): 1249-1264. DOI: 10.1002/hep.28740.
|
[7] |
Society of Infectious Diseases, Chinese Medical Association. Expert consensus on diagnosis and treatment of end-stage liver disease complicated infection (2021 version)[J]. Clin Hepatol, 2022, 38(2): 304-310. DOI: 10.3760/cma.j.cn501113-20220209-00061.
中华医学会感染病学分会. 终末期肝病合并感染诊治专家共识(2021年版)[J]. 临床肝胆病杂志, 2022, 38(2): 304-310. DOI: 10.3760/cma.j.cn501113-20220209-00061.
|
[8] |
BARENHOLZ Y. Doxil®--the first FDA-approved nano-drug: lessons learned[J]. J Control Release, 2012, 160(2): 117-134. DOI: 10.1016/j.jconrel.2012.03.020.
|
[9] |
SHAH S, DHAWAN V, HOLM R, et al. Liposomes: Advancements and innovation in the manufacturing process[J]. Adv Drug Deliv Rev, 2020, 154-155: 102-122. DOI: 10.1016/j.addr.2020.07.002.
|
[10] |
FDA. Accelerated approval lpad pathway approval[EB/OL]. [2018-09-28].
|
[11] |
GUPTA A, MUMTAZ S, LI CH, et al. Combatting antibiotic-resistant bacteria using nanomaterials[J]. Chem Soc Rev, 2019, 48(2): 415-427. DOI: 10.1039/c7cs00748e.
|
[12] |
RIDUAN SN, ZHANG Y. Nanostructured Surfaces with multimodal antimicrobial action[J]. Acc Chem Res, 2021, 54(24): 4508-4517. DOI: 10.1021/acs.accounts.1c00542.
|
[13] |
LINKLATER DP, BAULIN VA, LE GUÉVEL X, et al. Antibacterial action of nanoparticles by lethal stretching of bacterial cell membranes[J]. Adv Mater, 2020, 32(52): e2005679. DOI: 10.1002/adma.202005679.
|
[14] |
WU R, OU X, TIAN R, et al. Membrane destruction and phospholipid extraction by using two-dimensional MoS2 nanosheets[J]. Nanoscale, 2018, 10(43): 20162-20170. DOI: 10.1039/c8nr04207a.
|
[15] |
SHARMA D, MISBA L, KHAN AU. Antibiotics versus biofilm: an emerging battleground in microbial communities[J]. Antimicrob Resist Infect Control, 2019, 8: 76. DOI: 10.1186/s13756-019-0533-3.
|
[16] |
BI X, BAI Q, LIANG M, et al. Silver peroxide nanoparticles for combined antibacterial sonodynamic and photothermal therapy[J]. Small, 2022, 18(2): e2104160. DOI: 10.1002/smll.202104160.
|
[17] |
DING L, JIANG J, CHENG L, et al. Oral administration of nanoiron sulfide supernatant for the treatment of gallbladder stones with chronic cholecystitis[J]. ACS Appl Bio Mater, 2021, 4(5): 3773-3785. DOI: 10.1021/acsabm.0c01258.
|
[18] |
LI J, MENG Z, ZHUANG Z, et al. Effective therapy of drug-resistant bacterial infection by killing planktonic bacteria and destructing biofilms with cationic photosensitizer based on phosphindole oxide[J]. Small, 2022, 18(17): e2200743. DOI: 10.1002/smll.202200743.
|
[19] |
BOCATE KP, REIS GF, de SOUZA PC, et al. Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus[J]. Int J Food Microbiol, 2019, 291: 79-86. DOI: 10.1016/j.ijfoodmicro.2018.11.012.
|
[20] |
ZHOU H, TANG D, KANG X, et al. Degradable pseudo conjugated polymer nanoparticles with NIR-Ⅱ photothermal effect and cationic quaternary phosphonium structural bacteriostasis for anti-infection therapy[J]. Adv Sci (Weinh), 2022, 9(16): e2200732. DOI: 10.1002/advs.202200732.
|
[21] |
GAO F, SHAO T, YU Y, et al. Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action[J]. Nat Commun, 2021, 12(1): 745. DOI: 10.1038/s41467-021-20965-3.
|
[22] |
AHAMAD N, KAR A, MEHTA S, et al. Immunomodulatory nanosystems for treating inflammatory diseases[J]. Biomaterials, 2021, 274: 120875. DOI: 10.1016/j.biomaterials.2021.120875.
|
[23] |
MA Q, FAN Q, XU J, et al. Calming cytokine storm in pneumonia by targeted delivery of TPCA-1 using platelet-derived extracellular vesicles[J]. Matter, 2020, 3(1): 287-301. DOI: 10.1016/j.matt.2020.05.017.
|
[24] |
XI J, AN L, HUANG Y, et al. Ultrasmall FeS2 nanoparticles-decorated carbon spheres with laser-mediated ferrous ion release for antibacterial therapy[J]. Small, 2021, 17(13): e2005473. DOI: 10.1002/smll.202005473.
|
[25] |
FENG X, XU W, LI Z, et al. Immunomodulatory nanosystems[J]. Adv Sci (Weinh), 2019, 6(17): 1900101. DOI: 10.1002/advs.201900101.
|
[26] |
QU X, WANG M, WANG M, et al. Multi-mode antibacterial strategies enabled by gene-transfection and immunomodulatory nanoparticles in 3D-printed scaffolds for synergistic exogenous and endogenous treatment of infections[J]. Adv Mater, 2022, 34(18): e2200096. DOI: 10.1002/adma.202200096.
|
[27] |
YE M, ZHAO Y, WANG Y, et al. PH-responsive polymer-drug conjugate: an effective strategy to combat the antimicrobial resistance[J]. Adv Funct Mater, 2020, 30(39): 2002655. DOI: 10.1002/adfm.202002655.
|
[28] |
MIRVAKILI SM, NGO QP, LANGER R. Polymer nanocomposite microactuators for on-demand chemical release via high-frequency magnetic field excitation[J]. Nano Lett, 2020, 20(7): 4816-4822. DOI: 10.1021/acs.nanolett.0c00648.
|
[29] |
SOTO F, WANG J, AHMED R, et al. Medical micro/nanorobots in precision medicine[J]. Adv Sci (Weinh), 2020, 7(21): 2002203. DOI: 10.1002/advs.202002203.
|
[30] |
ARQUÉ X, TORRES M, PATIÑO T, et al. Autonomous treatment of bacterial infections in vivo using antimicrobial micro- and nanomotors[J]. ACS Nano, 2022, 16(5): 7547-7558. DOI: 10.1021/acsnano.1c11013.
|
[31] |
MAŤÁTKOVÁ O, MICHAILIDU J, MIŠKOVSKÁ A, et al. Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods[J]. Biotechnol Adv, 2022, 58: 107905. DOI: 10.1016/j.biotechadv.2022.107905.
|