[1] |
SASADA T, SUEKANE S. Variation of tumor-infiltrating lymphocytes in human cancers: controversy on clinical significance[J]. Immunotherapy, 2011, 3(10): 1235-1251. DOI: 10.2217/imt.11.106.
|
[2] |
RASKOV H, ORHAN A, CHRISTENSEN JP, et al. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy[J]. Br J Cancer, 2021, 124(2): 359-367. DOI: 10.1038/s41416-020-01048-4.
|
[3] |
WIEDEMANN A, DEPOIL D, FAROUDI M, et al. Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses[J]. Proc Natl Acad Sci U S A, 2006, 103(29): 10985-10990. DOI: 10.1073/pnas.0600651103.
|
[4] |
ABIKO K, MATSUMURA N, HAMANISHI J, et al. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer[J]. Br J Cancer, 2015, 112(9): 1501-1509. DOI: 10.1038/bjc.2015.101.
|
[5] |
AHMADZADEH M, JOHNSON LA, HEEMSKERK B, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired[J]. Blood, 2009, 114(8): 1537-1544. DOI: 10.1182/blood-2008-12-195792.
|
[6] |
INOZUME T, HANADA K, WANG QJ, et al. Selection of CD8+PD-1+ lymphocytes in fresh human melanomas enriches for tumor-reactive T cells[J]. J Immunother, 2010, 33(9): 956-964. DOI: 10.1097/CJI.0b013e3181fad2b0.
|
[7] |
EBERLEIN TJ, ROSENSTEIN M, ROSENBERG SA. Regression of a disseminated syngeneic solid tumor by systemic transfer of lymphoid cells expanded in interleukin 2[J]. J Exp Med, 1982, 156(2): 385-397. DOI: 10.1084/jem.156.2.385.
|
[8] |
ROSENBERG SA, SPIESS P, LAFRENIERE R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes[J]. Science, 1986, 233(4770): 1318-1321. DOI: 10.1126/science.3489291.
|
[9] |
ROSENBERG SA, YANG JC, SHERRY RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy[J]. Clin Cancer Res, 2011, 17(13): 4550-4557. DOI: 10.1158/1078-0432.CCR-11-0116.
|
[10] |
ROSENBERG SA, PACKARD BS, AEBERSOLD PM, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report[J]. N Engl J Med, 1988, 319(25): 1676-1680. 10.1056/NEJM198812223192527. DOI: 10.1056/NEJM198812223192527
|
[11] |
SHARMA P, HU-LIESKOVAN S, WARGO JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy[J]. Cell, 2017, 168(4): 707-723. DOI: 10.1016/j.cell.2017.01.017.
|
[12] |
SIM M, SUN PD. T cell recognition of tumor neoantigens and insights into T cell immunotherapy[J]. Front Immunol, 2022, 13: 833017. DOI: 10.3389/fimmu.2022.833017.
|
[13] |
KRISTENSEN NP, HEEKE C, TVINGSHOLM SA, et al. Neoantigen-reactive CD8+ T cells affect clinical outcome of adoptive cell therapy with tumor-infiltrating lymphocytes in melanoma[J]. J Clin Invest, 2022, 132(2): e150535. DOI: 10.1172/JCI150535.
|
[14] |
RATTO GB, ZINO P, MIRABELLI S, et al. A randomized trial of adoptive immunotherapy with tumor-infiltrating lymphocytes and interleukin-2 versus standard therapy in the postoperative treatment of resected nonsmall cell lung carcinoma[J]. Cancer, 1996, 78(2): 244-251. DOI: 10.1002/(SICI)1097-0142(19960715)78:2<244::AID-CNCR9>3.0.CO;2-L.
|
[15] |
XING Y, YASINJAN F, DU Y, et al. Immunotherapy in cervical cancer: From the view of scientometric analysis and clinical trials[J]. Front Immunol, 2023, 14: 1094437. DOI: 10.3389/fimmu.2023.1094437.
|
[16] |
STEVANOVIĆ S, DRAPER LM, LANGHAN MM, et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells[J]. J Clin Oncol, 2015, 33(14): 1543-1550. DOI: 10.1200/JCO.2014.58.9093.
|
[17] |
DENG M, RAN P, CHEN L, et al. Proteogenomic characterization of cholangiocarcinoma[J]. Hepatology, 2023, 77(2): 411-429. DOI: 10.1002/hep.32624.
|
[18] |
HYDER O, HATZARAS I, SOTIROPOULOS GC, et al. Recurrence after operative management of intrahepatic cholangiocarcinoma[J]. Surgery, 2013, 153(6): 811-818. DOI: 10.1016/j.surg.2012.12.005.
|
[19] |
ZHOU G, SPRENGERS D, MANCHAM S, et al. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules[J]. J Hepatol, 2019, 71(4): 753-762. DOI: 10.1016/j.jhep.2019.05.026.
|
[20] |
GOEPPERT B, FRAUENSCHUH L, ZUCKNICK M, et al. Prognostic impact of tumour-infiltrating immune cells on biliary tract cancer[J]. Br J Cancer, 2013, 109(10): 2665-2674. DOI: 10.1038/bjc.2013.610.
|
[21] |
LIU D, HEIJ LR, CZIGANY Z, et al. The role of tumor-infiltrating lymphocytes in cholangiocarcinoma[J]. J Exp Clin Cancer Res, 2022, 41(1): 127. DOI: 10.1186/s13046-022-02340-2.
|
[22] |
VIGANO L, SOLDANI C, FRANCESCHINI B, et al. Tumor-infiltrating lymphocytes and macrophages in intrahepatic cholangiocellular carcinoma. Impact on prognosis after complete surgery[J]. J Gastrointest Surg, 2019, 23(11): 2216-2224. DOI: 10.1007/s11605-019-04111-5.
|
[23] |
OSHIKIRI T, MIYAMOTO M, SHICHINOHE T, et al. Prognostic value of intratumoral CD8+ T lymphocyte in extrahepatic bile duct carcinoma as essential immune response[J]. J Surg Oncol, 2003, 84(4): 224-228. DOI: 10.1002/jso.10321.
|
[24] |
WOO SR, CORRALES L, GAJEWSKI TF. The STING pathway and the T cell-inflamed tumor microenvironment[J]. Trends Immunol, 2015, 36(4): 250-256. DOI: 10.1016/j.it.2015.02.003.
|
[25] |
KATHER JN, SUAREZ-CARMONA M, CHAROENTONG P, et al. Topography of cancer-associated immune cells in human solid tumors[J]. Elife, 2018, 7: e36967. DOI: 10.7554/eLife.36967.
|
[26] |
ZHOU M, WANG C, LU S, et al. Tumor-associated macrophages in cholangiocarcinoma: complex interplay and potential therapeutic target[J]. EBioMedicine, 2021, 67: 103375. DOI: 10.1016/j.ebiom.2021.103375.
|
[27] |
BRAHMER JR, TYKODI SS, CHOW LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J]. N Engl J Med, 2012, 366(26): 2455-2465. DOI: 10.1056/NEJMoa1200694.
|
[28] |
YOON JG, KIM MH, JANG M, et al. Molecular characterization of biliary tract cancer predicts chemotherapy and programmed death 1/programmed death-ligand 1 blockade responses[J]. Hepatology, 2021, 74(4): 1914-1931. DOI: 10.1002/hep.31862.
|
[29] |
GOEPPERT B, ROESSLER S, RENNER M, et al. Mismatch repair deficiency is a rare but putative therapeutically relevant finding in non-liver fluke associated cholangiocarcinoma[J]. Br J Cancer, 2019, 120(1): 109-114. DOI: 10.1038/s41416-018-0199-2.
|
[30] |
NAKAMURA H, ARAI Y, TOTOKI Y, et al. Genomic spectra of biliary tract cancer[J]. Nat Genet, 2015, 47(9): 1003-1010. DOI: 10.1038/ng.3375.
|
[31] |
SAWASDEE N, THEPMALEE C, SUJJITJOON J, et al. Gemcitabine enhances cytotoxic activity of effector T-lymphocytes against chemo-resistant cholangiocarcinoma cells[J]. Int Immunopharmacol, 2020, 78: 106006. DOI: 10.1016/j.intimp.2019.106006.
|
[32] |
MORISAKI T, UMEBAYASHI M, KIYOTA A, et al. Combining cetuximab with killer lymphocytes synergistically inhibits human cholangiocarcinoma cells in vitro[J]. Anticancer Res, 2012, 32(6): 2249-2256.
|
[33] |
KVERNELAND AH, CHAMBERLAIN CA, BORCH TH, et al. Adoptive cell therapy with tumor-infiltrating lymphocytes supported by checkpoint inhibition across multiple solid cancer types[J]. J Immunother Cancer, 2021, 9(10): e003499. DOI: 10.1136/jitc-2021-003499.
|
[34] |
TRAN E, TURCOTTE S, GROS A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer[J]. Science, 2014, 344(6184): 641-645. DOI: 10.1126/science.1251102.
|
[35] |
PRICKETT TD, CRYSTAL JS, COHEN CJ, et al. Durable complete response from metastatic melanoma after transfer of autologous T cells recognizing 10 mutated tumor antigens[J]. Cancer Immunol Res, 2016, 4(8): 669-678. DOI: 10.1158/2326-6066.CIR-15-0215.
|
[36] |
TRAN E, ROBBINS PF, LU YC, et al. T-Cell transfer therapy targeting mutant KRAS in cancer[J]. N Engl J Med, 2016, 375(23): 2255-2262. DOI: 10.1056/NEJMoa1609279.
|
[37] |
KOUKOURAKIS IM, GKEGKA AG, XANTHOPOULOU E, et al. Prognostic and predictive relevance of tumor-infiltrating lymphocytes in squamous cell head-neck cancer patients treated with radical radiotherapy/chemo-radiotherapy[J]. Curr Oncol, 2022, 29(6): 4274-4284. DOI: 10.3390/curroncol29060342.
|
[38] |
AOKI Y, TAKAKUWA K, KODAMA S, et al. Use of adoptive transfer of tumor-infiltrating lymphocytes alone or in combination with cisplatin-containing chemotherapy in patients with epithelial ovarian cancer[J]. Cancer Res, 1991, 51(7): 1934-1939.
|
[39] |
CHAMBERLAIN CA, BENNETT EP, KVERNELAND AH, et al. Highly efficient PD-1-targeted CRISPR-Cas9 for tumor-infiltrating lymphocyte-based adoptive T cell therapy[J]. Mol Ther Oncolytics, 2022, 24: 417-428. DOI: 10.1016/j.omto.2022.01.004.
|
[40] |
ZHANG L, MORGAN RA, BEANE JD, et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma[J]. Clin Cancer Res, 2015, 21(10): 2278-2288. DOI: 10.1158/1078-0432.CCR-14-2085.
|
[41] |
FORGET MA, TAVERA RJ, HAYMAKER C, et al. A novel method to generate and expand clinical-grade, genetically modified, tumor-infiltrating lymphocytes[J]. Front Immunol, 2017, 8: 908. DOI: 10.3389/fimmu.2017.00908.
|
[42] |
GERARD CL, DELYON J, WICKY A, et al. Turning tumors from cold to inflamed to improve immunotherapy response[J]. Cancer Treat Rev, 2021, 101: 102227. DOI: 10.1016/j.ctrv.2021.102227.
|