[1] |
CAO XX, GAO YQ, ZHANG WH, et al. Cholestasis morbidity rate in first-hospitalized patients with chronic liver disease in Shanghai[J]. Chin J Hepatol, 2015, 23(8): 569-573. DOI: 10.3760/cma.j.issn.1007-3418.2015.08.003.
曹旬旬, 高月求, 张文宏, 等. 基于上海市住院慢性肝病患者胆汁淤积患病率的调查研究[J]. 中华肝脏病杂志, 2015, 23(8): 569-573. DOI: 10.3760/cma.j.issn.1007-3418.2015.08.003.
|
[2] |
LU L. Emphasis on the clinical management of cholestatic liver disease[J]. J Intern Med Concepts Pract, 2022, 17(1): 1-3. DOI: 10.16138/j.1673-6087.2022.01.001.
陆伦根. 重视胆汁淤积性肝病临床管理[J]. 内科理论与实践, 2022, 17(1): 1-3. DOI: 10.16138/j.1673-6087.2022.01.001.
|
[3] |
LU L, Chinese Society of Hepatology and Chinese Medical Association. Guidelines for the management of cholestatic liver diseases (2021)[J]. J Clin Transl Hepatol, 2022, 10(4): 757-769. DOI: 10.14218/JCTH.2022.00147.
|
[4] |
RUSSO P, MAGEE JC, BOITNOTT J, et al. Design and validation of the biliary atresia research consortium histologic assessment system for cholestasis in infancy[J]. Clin Gastroenterol Hepatol, 2011, 9(4): 357-362. e2. DOI: 10.1016/j.cgh.2011.01.003.
|
[5] |
GOVINDARAJAN KK. Biliary atresia: Where do we stand now?[J]. World J Hepatol, 2016, 8(36): 1593-1601. DOI: 10.4254/wjh.v8.i36.1593.
|
[6] |
DEGTYAREVA A, RAZUMOVSKIY A, KULIKOVA N, et al. Long-term effects of kasai portoenterostomy for biliary atresia treatment in Russia[J]. Diagnostics (Basel), 2020, 10(9): 686. DOI: 10.3390/diagnostics10090686.
|
[7] |
ZHANG SH, LIAO CX, ZHANG CX, et al. Establishment of a mouse model of biliary obstruction and its dynamic observations[J]. J South Med Univ, 2008, 28(9): 1579-1581. DOI: 10.3321/j.issn:1673-4254.2008.09.013.
张守华, 廖彩仙, 张春兴, 等. 小鼠梗阻性黄疸模型的建立及动态观察[J]. 南方医科大学学报, 2008, 28(9): 1579-1581. DOI: 10.3321/j.issn:1673-4254.2008.09.013.
|
[8] |
GE JT, LI L, WEI YD, et al. Exploration of establishment of a newborn BALB/c mouse model of biliary obstruction[J]. Acta Lab Anita Sci Sin, 2013, 21(4): 35-37, 97-98. DOI: 10.3969/j.issn.1005-4847.2013.04.008.
葛军涛, 李龙, 魏延栋, 等. 哺乳期BALB/c小鼠胆道梗阻模型的探索[J]. 中国实验动物学报, 2013, 21(4): 35-37, 97-98. DOI: 10.3969/j.issn.1005-4847.2013.04.008.
|
[9] |
KOPP K, HERNANDEZ-JOVER M, ROBERTSON S, et al. A survey of new south wales sheep producer practices and perceptions on lamb mortality and ewe supplementation[J]. Animals (Basel), 2020, 10(9): 1586. DOI: 10.3390/ani10091586.
|
[10] |
HARPER P, PLANT JW, UNGER DB. Congenital biliary atresia and jaundice in lambs and calves[J]. Aust Vet J, 1990, 67(1): 18-22. DOI: 10.1111/j.1751-0813.1990.tb07385.x.
|
[11] |
LORENT K, GONG W, KOO KA, et al. Identification of a plant isoflavonoid that causes biliary atresia[J]. Sci Transl Med, 2015, 7(286): 286ra67. DOI: 10.1126/scitranslmed.aaa1652.
|
[12] |
YANG YF, DONG R, LIU J, et al. Synthesis study of biliatresone, a plant isoflavonoid that causes biliary atresia in zebrafish[J]. Chin J Exp Surg, 2019, 36(10): 1886-1888. DOI: 10.3760/cma.i.issn.1001-9030.2019.10.044.
杨一凡, 董瑞, 刘佳, 等. 合成胆道毒素诱导斑马鱼胆道闭锁模型的建立[J]. 中华实验外科杂志, 2019, 36(10): 1886-1888. DOI: 10.3760/cma.i.issn.1001-9030.2019.10.044.
|
[13] |
MACK CL. The pathogenesis of biliary atresia: evidence for a virus-induced autoimmune disease[J]. Semin Liver Dis, 2007, 27(3): 233-242. DOI: 10.1055/s-2007-985068.
|
[14] |
RIEPENHOFF-TALTY M, SCHAEKEL K, CLARK HF, et al. Group A rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice[J]. Pediatr Res, 1993, 33(4 Pt 1): 394-399. DOI: 10.1203/00006450-199304000-00016.
|
[15] |
PETERSEN C. Biliary atresia: the animal models[J]. Semin Pediatr Surg, 2012, 21(3): 185-191. DOI: 10.1053/j.sempedsurg.2012.05.002.
|
[16] |
ZHAO J, KIM H, HAN Y, et al. Chronological changes in epidemiologic features of patients with gallstones over the last 20 years in a single large-volume Korean center[J]. Ann Surg Treat Res, 2019, 97(3): 136-141. DOI: 10.4174/astr.2019.97.3.136.
|
[17] |
NJEZE GE. Gallstones[J]. Niger J Surg, 2013, 19(2): 49-55. DOI: 10.4103/1117-6806.119236.
|
[18] |
EVERSON GT. Gallbladder function in gallstone disease[J]. Gastroenterol Clin North Am, 1991, 20(1): 85-110.
|
[19] |
TEPPERMAN J, CALDWELL FT, TEPPERMAN HM. Induction of gallstones in mice by feeding a cholesterol-cholic acid containing diet[J]. Am J Physiol, 1964, 206(3): 628-634. DOI: 10.1152/ajplegacy.1964.206.3.628.
|
[20] |
FUJIHIRA E, KANETA S, OHSHIMA T. Strain difference in mouse cholelithiasis and the effect of taurine on the gallstone formation in C57BL/C mice[J]. Biochem Med, 1978, 19(2): 211-217. DOI: 10.1016/0006-2944(78)90022-4.
|
[21] |
WANG TY, PORTINCASA P, LIU M, et al. Mouse models of gallstone disease[J]. Curr Opin Gastroenterol, 2018, 34(2): 59-70. DOI: 10.1097/MOG.0000000000000417.
|
[22] |
WILUND KR, FEENEY LA, TOMAYKO EJ, et al. Endurance exercise training reduces gallstone development in mice[J]. J Appl Physiol (1985), 2008, 104(3): 761-765. DOI: 10.1152/japplphysiol.01292.2007.
|
[23] |
SHEN T, LIU Y, SHANG J, et al. Incidence and etiology of drug-induced liver injury in Mainland China[J]. Gastroenterology, 2019, 156(8): 2230-2241. e11. DOI: 10.1053/j.gastro.2019.02.002.
|
[24] |
GIJBELS E, VILAS-BOAS V, DEFERM N, et al. Mechanisms and in vitro models of drug-induced cholestasis[J]. Arch Toxicol, 2019, 93(5): 1169-1186. DOI: 10.1007/s00204-019-02437-2.
|
[25] |
GOOIJERT KE, HAVINGA R, WOLTERS H, et al. The mechanism of increased biliary lipid secretion in mice with genetic inactivation of bile salt export pump[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 308(5): G450-G457. DOI: 10.1152/ajpgi.00391.2014.
|
[26] |
WANG R, LAM P, LIU L, et al. Severe cholestasis induced by cholic acid feeding in knockout mice of sister of P- glycoprotein[J]. Hepatology, 2003, 38(6): 1489-1499. DOI: 10.1016/j.hep.2003.09.037.
|
[27] |
ANTHÉRIEU S, BACHOUR-EL AZZI P, DUMONT J, et al. Oxidative stress plays a major role in chlorpromazine-induced cholestasis in human HepaRG cells[J]. Hepatology, 2013, 57(4): 1518-1529. DOI: 10.1002/hep.26160.
|
[28] |
YAO YB, ZHAN J, YU Z. Experimental study on liver injury rats induced by chlorpromazine and paracetamol[J]. China Pharmacist, 2007, 10(11): 1085-1087. DOI: 10.3969/j.issn.1008-049X.2007.11.016.
姚亚奔, 占俊, 于钟. 氯丙嗪、对乙酰氨基酚致大鼠肝损伤的实验研究[J]. 中国药师, 2007, 10(11): 1085-1087. DOI: 10.3969/j.issn.1008-049X.2007.11.016.
|
[29] |
YASUMIBA S, TAZUMA S, OCHI H, et al. Cyclosporin A reduces canalicular membrane fluidity and regulates transporter function in rats[J]. Biochem J, 2001, 354(Pt 3): 591-596. DOI: 10.1042/0264-6021:3540591.
|
[30] |
JIANG SE, ZHANG SX, ZHENG XX. Effect of serum phIGFBP-1 levels on pregnant women and fetuses with intrahepatic cholestasis of pregnancy[J]. China Med Herald, 2021, 18(12): 119-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202112030.htm
姜素娥, 张曙萱, 郑晓晓. 血清phIGFBP-1水平对妊娠期肝内胆汁淤积症孕妇及胎儿的影响[J]. 中国医药导报, 2021, 18(12): 119-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202112030.htm
|
[31] |
ZHU GY, LUO LQ, ZHONG XL, et al. Levels of irisin in serum and umbilical vein blood of pregnant women with intrahepatic cholestasis of pregnancy and the relationship with clinical indicators[J/CD]. Chin J Liver Dis (Electronic Version), 2022, 14(1): 58-66. DOI:
朱桂圆, 罗丽琼, 钟雪莉, 等. 妊娠期肝内胆汁淤积症孕妇血清和脐静脉血中鸢尾素水平及与临床指标的相关性[J/CD]. 中国肝脏病杂志(电子版), 2022, 14(1): 58-66. DOI:
|
[32] |
LAMMERT F, WANG DQ, HILLEBRANDT S, et al. Spontaneous cholecysto- and hepatolithiasis in Mdr2-/- mice: a model for low phospholipid-associated cholelithiasis[J]. Hepatology, 2004, 39(1): 117-128. DOI: 10.1002/hep.20022.
|
[33] |
REYES H, BÁEZ ME, GONZÁLEZ MC, et al. Selenium, zinc and copper plasma levels in intrahepatic cholestasis of pregnancy, in normal pregnancies and in healthy individuals, in Chile[J]. J Hepatol, 2000, 32(4): 542-549. DOI: 10.1016/s0168-8278(00)80214-7.
|
[34] |
CROCENZI FA, MOTTINO AD, CAO J, et al. Estradiol-17beta-D-glucuronide induces endocytic internalization of Bsep in rats[J]. Am J Physiol Gastrointest Liver Physiol, 2003, 285(2): G449-G459. DOI: 10.1152/ajpgi.00508.2002.
|
[35] |
SCHEUER PJ. Ludwig Symposium on biliary disorders-part Ⅱ. Pathologic features and evolution of primary biliary cirrhosis and primary sclerosing cholangitis[J]. Mayo Clin Proc, 1998, 73(2): 179-183. DOI: 10.4065/73.2.179.
|
[36] |
LINDOR KD, GERSHWIN ME, POUPON R, et al. Primary biliary cirrhosis[J]. Hepatology, 2009, 50(1): 291-308. DOI: 10.1002/hep.22906.
|
[37] |
OHBA K, OMAGARI K, MURASE K, et al. A possible mouse model for spontaneous cholangitis: serological and histological characteristics of MRL/lpr mice[J]. Pathology, 2002, 34(3): 250-256. DOI: 10.1080/00313020220131318.
|
[38] |
ZHANG W, SHARMA R, JU ST, et al. Deficiency in regulatory T cells results in development of antimitochondrial antibodies and autoimmune cholangitis[J]. Hepatology, 2009, 49(2): 545-552. DOI: 10.1002/hep.22651.
|
[39] |
HADASCHIK EN, WEI X, LEISS H, et al. Regulatory T cell-deficient scurfy mice develop systemic autoimmune features resembling lupus-like disease[J]. Arthritis Res Ther, 2015, 17(1): 35. DOI: 10.1186/s13075-015-0538-0.
|
[40] |
AOKI CA, ROIFMAN CM, LIAN ZX, et al. IL-2 receptor alpha deficiency and features of primary biliary cirrhosis[J]. J Autoimmun, 2006, 27(1): 50-53. DOI: 10.1016/j.jaut.2006.04.005.
|
[41] |
SALAS JT, BANALES JM, SARVIDE S, et al. Ae2a, b-deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis[J]. Gastroenterology, 2008, 134(5): 1482-1493. DOI: 10.1053/j.gastro.2008.02.020.
|
[42] |
VERGANI D, MIELI-VERGANI G. Mouse model of primary biliary cholangitis with a striking female predominance: A new powerful research tool[J]. Hepatology, 2016, 64(4): 1024-1027. DOI: 10.1002/hep.28718.
|
[43] |
KARLSEN TH, FOLSERAAS T, THORBURN D, et al. Primary sclerosing cholangitis - a comprehensive review[J]. J Hepatol, 2017, 67(6): 1298-1323. DOI: 10.1016/j.jhep.2017.07.022.
|
[44] |
FICKERT P, POLLHEIMER MJ, BEUERS U, et al. Characterization of animal models for primary sclerosing cholangitis (PSC)[J]. J Hepatol, 2014, 60(6): 1290-1303. DOI: 10.1016/j.jhep.2014.02.006.
|
[45] |
DURIE PR, KENT G, PHILLIPS MJ, et al. Characteristic multiorgan pathology of cystic fibrosis in a long-living cystic fibrosis transmembrane regulator knockout murine model[J]. Am J Pathol, 2004, 164(4): 1481-1493. DOI: 10.1016/S0002-9440(10)63234-8.
|
[46] |
POLLHEIMER MJ, TRAUNER M, FICKERT P. Will we ever model PSC?-"it's hard to be a PSC model!"[J]. Clin Res Hepatol Gastroenterol, 2011, 35(12): 792-804. DOI: 10.1016/j.clinre.2011.04.014.
|
[47] |
BAZETT M, HONEYMAN L, STEFANOV AN, et al. Cystic fibrosis mouse model-dependent intestinal structure and gut microbiome[J]. Mamm Genome, 2015, 26(5-6): 222-234. DOI: 10.1007/s00335-015-9560-4.
|
[48] |
MEERMAN L, KOOPEN NR, BLOKS V, et al. Biliary fibrosis associated with altered bile composition in a mouse model of erythropoietic protoporphyria[J]. Gastroenterology, 1999, 117(3): 696-705. DOI: 10.1016/s0016-5085(99)70464-6.
|
[49] |
YU H, LI Y, XU Z, et al. Identification of potential biomarkers in cholestasis and the therapeutic effect of melatonin by metabolomics, multivariate data and pathway analyses[J]. Int J Mol Med, 2018, 42(5): 2515-2526. DOI: 10.3892/ijmm.2018.3859.
|
[50] |
KATSUMI T, TOMITA K, LEUNG PS, et al. Animal models of primary biliary cirrhosis[J]. Clin Rev Allergy Immunol, 2015, 48(2-3): 142-153. DOI: 10.1007/s12016-015-8482-y.
|
[51] |
FICKERT P, FUCHSBICHLER A, MARSCHALL HU, et al. Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice[J]. Am J Pathol, 2006, 168(2): 410-422. DOI: 10.2353/ajpath.2006.050404.
|