[1] |
WHO. Hepatitis B[EB/OL]. (2022-06-24)[2022-10-20].
|
[2] |
ZHU M, WANG H, LOU T, et al. Current treatment of chronic hepatitis B: Clinical aspects and future directions[J]. Front Microbiol, 2022, 13: 975584. DOI: 10.3389/fmicb.2022.975584.
|
[3] |
MADHUSOODANAN J. Research round-up: hepatitis B[J]. Nature, 2022, 603(7903): S66-S67. DOI: 10.1038/d41586-022-00822-z.
|
[4] |
Chinese Society of Infectious Diseases, Chinese Medical Association, Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of chronic hepatitis B (version 2019)[J]. J Clin Hepatol, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.
中华医学会感染病学分会, 中华医学会肝病学分会. 慢性乙型肝炎防治指南(2019年版)[J]. 临床肝胆病杂志, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.
|
[5] |
RAMJI A, DOUCETTE K, COOPER C, et al. Nationwide retrospective study of hepatitis B virological response and liver stiffness improvement in 465 patients on nucleos(t)ide analogue[J]. World J Gastroenterol, 2022, 28(31): 4390-4398. DOI: 10.3748/wjg.v28.i31.4390.
|
[6] |
BUSCA A, KUMAR A. Innate immune responses in hepatitis B virus (HBV) infection[J]. Virol J, 2014, 11: 22. DOI: 10.1186/1743-422X-11-22.
|
[7] |
MAEPA MB, ELY A, KRAMVIS A, et al. Hepatitis B virus research in South Africa[J]. Viruses, 2022, 14(9): 1939. DOI: 10.3390/v14091939.
|
[8] |
SKRLEC I, TALAPKO J. Hepatitis B and circadian rhythm of the liver[J]. World J Gastroenterol, 2022, 28(27): 3282-3296. DOI: 10.3748/wjg.v28.i27.3282.
|
[9] |
TSOUNIS EP, TOURKOCHRISTOU E, MOUZAKI A, et al. Toward a new era of hepatitis B virus therapeutics: The pursuit of a functional cure[J]. World J Gastroenterol, 2021, 27(21): 2727-2757. DOI: 10.3748/wjg.v27.i21.2727.
|
[10] |
BONINO F, COLOMBATTO P, BRUNETTO M R. HBeAg-negative/anti-HBe-positive chronic hepatitis B: a 40-year-old history[J]. Viruses, 2022, 14(8): 1691. DOI: 10.3390/v14081691.
|
[11] |
SEEGER C, MASON WS. Molecular biology of hepatitis B virus infection[J]. Virology, 2015, 479-480: 672-686. DOI: 10.1016/j.virol.2015.02.031.
|
[12] |
JIN X, YAN ZH, LU L, et al. Peripheral immune cells exhaustion and functional impairment in patients with chronic hepatitis B[J]. Front Med (Lausanne), 2021, 8: 759292. DOI: 10.3389/fmed.2021.759292.
|
[13] |
SAJID M, LIU L, SUN C. The dynamic role of NK cells in liver cancers: role in HCC and HBV associated HCC and its therapeutic implications[J]. Front Immunol, 2022, 13: 887186. DOI: 10.3389/fimmu.2022.887186.
|
[14] |
LI HJ, YANG N, MU X, et al. Reduction of natural killer cells is associated with poor outcomes in patients with hepatitis B virus-related acute-on-chronic liver failure[J]. Hepatol Int, 2022, 16(6): 1398-1411. DOI: 10.1007/s12072-022-10386-9.
|
[15] |
LI Y, WANG JJ, GAO S, et al. Decreased peripheral natural killer cells activity in the immune activated stage of chronic hepatitis B[J]. PLoS One, 2014, 9(2): e86927. DOI: 10.1371/journal.pone.0086927.
|
[16] |
LI X, ZHOU L, GU L, et al. Veritable antiviral capacity of natural killer cells in chronic HBV infection: an argument for an earlier anti-virus treatment[J]. J Transl Med, 2017, 15(1): 220. DOI: 10.1186/s12967-017-1318-1.
|
[17] |
MONDELLI MU, VARCHETTA S, OLIVIERO B. Natural killer cells in viral hepatitis: facts and controversies[J]. Eur J Clin Invest, 2010, 40(9): 851-863. DOI: 10.1111/j.1365-2362.2010.02332.x.
|
[18] |
SUN C, SUN HY, XIAO WH, et al. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy[J]. Acta Pharmacol Sin, 2015, 36(10): 1191-1199. DOI: 10.1038/aps.2015.41.
|
[19] |
CHEN Y, TIAN Z. HBV-induced immune imbalance in the development of HCC[J]. Front Immunol, 2019, 10: 2048. DOI: 10.3389/fimmu.2019.02048.
|
[20] |
YU L, LIU X, WANG X, et al. TIGIT+ TIM-3+ NK cells are correlated with NK cell exhaustion and disease progression in patients with hepatitis B virus-related hepatocellular carcinoma[J]. Oncoimmunology, 2021, 10(1): 1942673. DOI: 10.1080/2162402X.2021.1942673.
|
[21] |
WANG X, XIONG H, NING Z. Implications of NKG2A in immunity and immune-mediated diseases[J]. Front Immunol, 2022, 13: 960852. DOI: 10.3389/fimmu.2022.960852.
|
[22] |
LI F, WEI H, WEI H, et al. Blocking the natural killer cell inhibitory receptor NKG2A increases activity of human natural killer cells and clears hepatitis B virus infection in mice[J]. Gastroenterology, 2013, 144(2): 392-401. DOI: 10.1053/j.gastro.2012.10.039.
|
[23] |
MA Q, DONG X, LIU S, et al. Hepatitis B e antigen induces NKG2A+ natural killer cell dysfunction via regulatory T cell-derived interleukin 10 in chronic hepatitis B virus Infection[J]. Front Cell Dev Biol, 2020, 8: 421. DOI: 10.3389/fcell.2020.00421.
|
[24] |
PERUZZI G, MASILAMANI M, BORREGO F, et al. Endocytosis as a mechanism of regulating natural killer cell function: unique endocytic and trafficking pathway for CD94/NKG2A[J]. Immunol Res, 2009, 43(1-3): 210-222. DOI: 10.1007/s12026-008-8072-7.
|
[25] |
LI PW, SHEN YQ. Effect of immune-checkpoint molecules on T-cell function in chronic infection with the HBV[J]. J Virol, 2021, 37(2): 465-470. DOI: 10.13242/j.cnki.bingduxuebao.003914.
李鹏尉, 沈宇清. 免疫检查点分子在慢性HBV感染中对T细胞功能影响的研究进展[J]. 病毒学报, 2021, 37(2): 465-470. DOI: 10.13242/j.cnki.bingduxuebao.003914.
|
[26] |
WANG Y, ZHANG H, LIU C, et al. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts[J]. J Hematol Oncol, 2022, 15(1): 111. DOI: 10.1186/s13045-022-01325-0.
|
[27] |
LI H, ZHAI N, WANG Z, et al. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection[J]. Gut, 2018, 67(11): 2035-2044. DOI: 10.1136/gutjnl-2017-314098.
|
[28] |
LI F. Correlation between the expression of PD-1/PD-L1 on NK cells and HBV infection[D]. Hengyang: University of South China, 2020.
李芬. NK细胞上PD-1/PD-L1表达与HBV感染相关性研究[D]. 衡阳: 南华大学, 2020.
|
[29] |
QUATRINI L, MARIOTTI F R, MUNARI E, et al. The immune checkpoint PD-1 in natural killer cells: expression, function and targeting in tumour immunotherapy[J]. Cancers (Basel), 2020, 12(11): 3285. DOI: 10.3390/cancers12113285.
|
[30] |
BAI R, CUI J. Burgeoning exploration of the role of natural killer cells in Anti-PD-1/PD-L1 therapy[J]. Front Immunol, 2022, 13: 886931. DOI: 10.3389/fimmu.2022.886931.
|
[31] |
WOLF Y, ANDERSON AC, KUCHROO VK. TIM3 comes of age as an inhibitory receptor[J]. Nat Rev Immunol, 2020, 20(3): 173-185. DOI: 10.1038/s41577-019-0224-6.
|
[32] |
CAI X, ZHAN H, YE Y, et al. Current progress and future perspectives of immune checkpoint in cancer and infectious diseases[J]. Front Genet, 2021, 12: 785153. DOI: 10.3389/fgene.2021.785153.
|
[33] |
LIU Y, GAO LF, LIANG XH, et al. Role of Tim-3 in hepatitis B virus infection: An overview[J]. World J Gastroenterol, 2016, 22(7): 2294-2303. DOI: 10.3748/wjg.v22.i7.2294.
|
[34] |
JU Y, HOU N, MENG J, et al. T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B[J]. J Hepatol, 2010, 52(3): 322-329. DOI: 10.1016/j.jhep.2009.12.005.
|
[35] |
YANG X, LI M, QIN X, et al. Photophosphatidylserine guides natural killer cell photoimmunotherapy via tim-3[J]. J Am Chem Soc, 2022, 144(9): 3863-3874. DOI: 10.1021/jacs.1c11498.
|
[36] |
TAN S, XU Y, WANG Z, et al. Tim-3 hampers tumor surveillance of liver-resident and conventional NK cells by disrupting PI3K signaling[J]. Cancer Res, 2020, 80(5): 1130-1142. DOI: 10.1158/0008-5472.CAN-19-2332.
|
[37] |
JIAO J, JIAO D, YANG F, et al. Galectin-9 expression predicts poor prognosis in hepatitis B virus-associated hepatocellular carcinoma[J]. Aging (Albany NY), 2022, 14(4): 1879-1890. DOI: 10.18632/aging.203909.
|
[38] |
LI WQ, YU X, HOU ZH, et al. HBV impairs the function of NK cells by upregulating Galectin-9 expression on hepatocytes[J]. Current Immunology, 2014, 34(6): 471-477. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY201406006.htm
李卫群, 于馨, 侯召华, 等. HBV通过上调肝细胞表面Galectin-9的表达抑制NK细胞的功能[J]. 现代免疫学, 2014, 34(6): 471-477. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY201406006.htm
|
[39] |
LI HR, ZHANG FQ, ZHANG ZC, et al. Research progress on mechanism of immunosuppressive receptor TIGIT in pathogen infection[J]. Chin J Immunol, 2022, 38(5): 632-637. DOI: 10.3969/j.issn.1000-484X.2022.05.022.
李浩然, 张富强, 张振超, 等. 免疫抑制性受体TIGIT在病原体感染中的作用机制研究进展[J]. 中国免疫学杂志, 2022, 38(5): 632-637. DOI: 10.3969/j.issn.1000-484X.2022.05.022.
|
[40] |
JEONG BS, NAM H, LEE J, et al. Structural and functional characterization of a monoclonal antibody blocking TIGIT[J]. MAbs, 2022, 14(1): 2013750. DOI: 10.1080/19420862.2021.2013750.
|
[41] |
YAO F, YIN X. Regulatory effect of immune checkpoint TIGIT/CD155 on the immune microenvironment of primary liver cancer and its application prospects[J]. J Clin Hepatol, 2022, 38(11): 2632-2635. DOI: 10.3969/j.issn.1001-5256.2022.11.039.
姚帆, 殷欣. 免疫检查点TIGIT/CD155对原发性肝癌免疫微环境的调控作用及应用展望[J]. 临床肝胆病杂志, 2022, 38(11): 2632-2635. DOI: 10.3969/j.issn.1001-5256.2022.11.039.
|
[42] |
YEO J, KO M, LEE DH, et al. TIGIT/CD226 axis regulates anti-tumor immunity[J]. Pharmaceuticals (Basel), 2021, 14(3): 200. DOI: 10.3390/ph14030200.
|
[43] |
MOLFETTA R, ZITTI B, LECCE M, et al. CD155: a multi-functional molecule in tumor progression[J]. Int J Mol Sci, 2020, 21(3): 922. DOI: 10.3390/ijms21030922.
|
[44] |
KUZEVANOVA A, APANOVICH N, MANSORUNOV D, et al. The features of checkpoint receptor-ligand interaction in cancer and the therapeutic effectiveness of their inhibition[J]. Biomedicines, 2022, 10(9): 2081. DOI: 10.3390/biomedicines10092081.
|
[45] |
ANNESE T, TAMMA R, RIBATTI D. Update in TIGIT immune-checkpoint role in cancer[J]. Front Oncol, 2022, 12: 871085. DOI: 10.3389/fonc.2022.871085.
|
[46] |
LU Y, SUN R, TIAN ZG, et al. Study on role of TIGIT in HBV immunotherapy[J]. Chin J Immunol, 2022, 38(2): 129-134. DOI: 10.3969/j.issn.1000-484X.2022.02.001.
卢杨, 孙汭, 田志刚, 等. TIGIT分子在HBV免疫治疗中的作用探究[J]. 中国免疫学杂志, 2022, 38(2): 129-134. DOI: 10.3969/j.issn.1000-484X.2022.02.001.
|
[47] |
KHAN M, AROOJ S, WANG H. NK cell-based immune checkpoint inhibition[J]. Front Immunol, 2020, 11: 167. DOI: 10.3389/fimmu.2020.00167.
|
[48] |
LI YL, ZHANG QF, YIN WW, et al. Reduced frequency of natural killer cell on siglec-7(+) is associated with progression of hepatitis B virus-related cirrhosis[J]. Chin J Hepatol, 2018, 26(6): 420-425. DOI: 10.3760/cma.j.issn.1007-3418.2018.06.006.
李彦霖, 张琼方, 殷文伟, 等. Siglec-7+自然杀伤细胞频数下降与乙型肝炎病毒相关肝硬化疾病进展相关[J]. 中华肝脏病杂志, 2018, 26(6): 420-425. DOI: 10.3760/cma.j.issn.1007-3418.2018.06.006.
|
[49] |
ZHAO D, JIANG X, XU Y, et al. Decreased siglec-9 expression on natural killer cell subset associated with persistent HBV replication[J]. Front Immunol, 2018, 9: 1124. DOI: 10.3389/fimmu.2018.01124.
|
[50] |
ALFARRA H, WEIR J, GRIEVE S, et al. Targeting NK cell inhibitory receptors for precision multiple myeloma immunotherapy[J]. Front Immunol, 2020, 11: 575609. DOI: 10.3389/fimmu.2020.575609.
|
[51] |
NARAYANAN S, AHL PJ, BIJIN VA, et al. LAG3 is a central regulator of NK cell cytokine production[J]. bioRxiv, 2020. DOI: 10.1101/2020.01.31.928200.[Olineaheadofprint]
|
[52] |
WANG J, HOU H, MAO L, et al. TIGIT signaling pathway regulates natural killer cell function in chronic hepatitis B virus infection[J]. Front Med (Lausanne), 2021, 8: 816474. DOI: 10.3389/fmed.2021.816474.
|
[53] |
REVILL PA, CHISARI FV, BLOCK JM, et al. A global scientific strategy to cure hepatitis B[J]. Lancet Gastroenterol Hepatol, 2019, 4(7): 545-558. DOI: 10.1016/S2468-1253(19)30119-0.
|
[54] |
INC AP. Ascletis announces results of the phase Ⅱa trial of ASC22 (Envafolimab) in patients with chronic hepatitis B to be presented in oral parallel session at the liver meetingⓇ 2021 by American Association for the Study of Liver Diseases[EB/OL]. (2021-10-11)[2022-10-20].
|
[55] |
MARKHAM A. Envafolimab: first approval[J]. Drugs, 2022, 82(2): 235-240. DOI: 10.1007/s40265-022-01671-w.
|