[1] |
BOECKMANS J, ROMBAUT M, DEMUYSER T, et al. Infections at the nexus of metabolic-associated fatty liver disease[J]. Arch Toxicol, 2021, 95(7): 2235-2253. DOI: 10.1007/s00204-021-03069-1.
|
[2] |
SAKURAI Y, KUBOTA N, YAMAUCHI T, et al. Role of insulin resistance in MAFLD[J]. Int J Mol Sci, 2021, 22(8): 4156. DOI: 10.3390/ijms22084156.
|
[3] |
ESLAM M, SANYAL AJ, GEORGE J, et al. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158(7): 1999-2014. e1. DOI: 10.1053/j.gastro.2019.11.312.
|
[4] |
CHEN L, WU N, KENNEDY L, et al. Inhibition of secretin/secretin receptor axis ameliorates NAFLD phenotypes[J]. Hepatology, 2021, 74(4): 1845-1863. DOI: 10.1002/hep.31871.
|
[5] |
TOKUSHIGE K, IKEJIMA K, ONO M, et al. Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis 2020[J]. J Gastroenterol, 2021, 56(11): 951-963. DOI: 10.1007/s00535-021-01796-x.
|
[6] |
BYRNE CD, TARGHER G. NAFLD: a multisystem disease[J]. J Hepatol, 2015, 62(1 Suppl): S47-S64. DOI: 10.1016/j.jhep.2014.12.012.
|
[7] |
LOOMBA R, FRIEDMAN SL, SHULMAN GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease[J]. Cell, 2021, 184(10): 2537-2564. DOI: 10.1016/j.cell.2021.04.015.
|
[8] |
XU M, XU HH, LIN Y, et al. LECT2, a ligand for tie1, plays a crucial role in liver fibrogenesis[J]. Cell, 2019, 178(6): 1478-1492. e20. DOI: 10.1016/j.cell.2019.07.021.
|
[9] |
CATALDO I, SARCOGNATO S, SACCHI D, et al. Pathology of non-alcoholic fatty liver disease[J]. Pathologica, 2021, 113(3): 194-202. DOI: 10.32074/1591-951X-242.
|
[10] |
BASSEGODA O, OLIVAS P, TURCO L, et al. Decompensation in advanced nonalcoholic fatty liver disease may occur at lower hepatic venous pressure gradient levels than in patients with viral disease[J]. Clin Gastroenterol Hepatol, 2022, 20(10): 2276-2286. e6. DOI: 10.1016/j.cgh.2021.10.023.
|
[11] |
ZHOU R, FAN X, SCHNABL B. Role of the intestinal microbiome in liver fibrosis development and new treatment strategies[J]. Transl Res, 2019, 209: 22-38. DOI: 10.1016/j.trsl.2019.02.005.
|
[12] |
KÖNIGSHOFER P, HOFER BS, BRUSILOVSKAYA K, et al. Distinct structural and dynamic components of portal hypertension in different animal models and human liver disease etiologies[J]. Hepatology, 2022, 75(3): 610-622. DOI: 10.1002/hep.32220.
|
[13] |
van der GRAAFF D, CHOTKOE S, DE WINTER B, et al. Vasoconstrictor antagonism improves functional and structural vascular alterations and liver damage in rats with early NAFLD[J]. JHEP Rep, 2022, 4(2): 100412. DOI: 10.1016/j.jhepr.2021.100412.
|
[14] |
ALBILLOS A, de GOTTARDI A, RESCIGNO M. The gut-liver axis in liver disease: Pathophysiological basis for therapy[J]. J Hepatol, 2020, 72(3): 558-577. DOI: 10.1016/j.jhep.2019.10.003.
|
[15] |
BAFFY G. Potential mechanisms linking gut microbiota and portal hypertension[J]. Liver Int, 2019, 39(4): 598-609. DOI: 10.1111/liv.13986.
|
[16] |
RODRIGUES SG, MONTANI M, GUIXÉ-MUNTET S, et al. Patients with signs of advanced liver disease and clinically significant portal hypertension do not necessarily have cirrhosis[J]. Clin Gastroenterol Hepatol, 2019, 17(10): 2101-2109. e1. DOI: 10.1016/j.cgh.2018.12.038.
|
[17] |
GARCÍA-LEZANA T, RAURELL I, BRAVO M, et al. Restoration of a healthy intestinal microbiota normalizes portal hypertension in a rat model of nonalcoholic steatohepatitis[J]. Hepatology, 2018, 67(4): 1485-1498. DOI: 10.1002/hep.29646.
|
[18] |
KANG N. Mechanotransduction in liver diseases[J]. Semin Liver Dis, 2020, 40(1): 84-90. DOI: 10.1055/s-0039-3399502.
|
[19] |
CHIN L, THEISE ND, LONEKER AE, et al. Lipid droplets disrupt mechanosensing in human hepatocytes[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 319(1): G11-G22. DOI: 10.1152/ajpgi.00098.2020.
|
[20] |
HO CM, HO SL, JENG YM, et al. Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease[J]. J Inflamm (Lond), 2019, 16: 7. DOI: 10.1186/s12950-019-0211-5.
|
[21] |
STINE JG, NICCUM BA, ZIMMET AN, et al. Increased risk of venous thromboembolism in hospitalized patients with cirrhosis due to non-alcoholic steatohepatitis[J]. Clin Transl Gastroenterol, 2018, 9(3): 140. DOI: 10.1038/s41424-018-0002-y.
|
[22] |
GABALLA D, BEZINOVER D, KADRY Z, et al. Development of a model to predict portal vein thrombosis in liver transplant candidates: the portal vein thrombosis risk index[J]. Liver Transpl, 2019, 25(12): 1747-1755. DOI: 10.1002/lt.25630.
|
[23] |
ABDEL-RAZIK A, MOUSA N, SHABANA W, et al. De novo portal vein thrombosis in non-cirrhotic non-alcoholic fatty liver disease: a 9-year prospective cohort study[J]. Front Med (Lausanne), 2021, 8: 650818. DOI: 10.3389/fmed.2021.650818.
|
[24] |
de GOTTARDI A, RAUTOU P E, SCHOUTEN J, et al. Porto-sinusoidal vascular disease: proposal and description of a novel entity[J]. Lancet Gastroenterol Hepatol, 2019, 4(5): 399-411. DOI: 10.1016/S2468-1253(19)30047-0.
|
[25] |
de GOTTARDI A, SEMPOUX C, BERZIGOTTI A. Porto-sinusoidal vascular disorder[J]. J Hepatol, 2022, 77(4): 1124-1135. DOI: 10.1016/j.jhep.2022.05.033.
|
[26] |
BALAKRISHNAN M, GARCIA-TSAO G, DENG Y, et al. Hepatic arteriolosclerosis: a small-vessel complication of diabetes and hypertension[J]. Am J Surg Pathol, 2015, 39(7): 1000-1009. DOI: 10.1097/PAS.0000000000000419.
|
[27] |
PANDAY R, MONCKTON CP, KHETANI SR. The role of liver zonation in physiology, regeneration, and disease[J]. Semin Liver Dis, 2022, 42(1): 1-16. DOI: 10.1055/s-0041-1742279.
|
[28] |
LI J, ZHANG X, TIAN J, et al. CX08005, a protein tyrosine phosphatase 1b inhibitor, attenuated hepatic lipid accumulation and microcirculation dysfunction associated with nonalcoholic fatty liver disease[J]. Pharmaceuticals (Basel), 2023, 16(1): 106. DOI: 10.3390/ph16010106.
|
[29] |
WISSE E, BRAET F, SHAMI GJ, et al. Fat causes necrosis and inflammation in parenchymal cells in human steatotic liver[J]. Histochem Cell Biol, 2022, 157(1): 27-38. DOI: 10.1007/s00418-021-02030-8.
|
[30] |
MATHIEU M, MARTIN-JAULAR L, LAVIEU G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17. DOI: 10.1038/s41556-018-0250-9.
|
[31] |
HERNÁNDEZ A, ARAB JP, REYES D, et al. Extracellular vesicles in NAFLD/ALD: from pathobiology to therapy[J]. Cells, 2020, 9(4): 817. DOI: 10.3390/cells9040817.
|
[32] |
JIANG F, CHEN Q, WANG W, et al. Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1[J]. J Hepatol, 2020, 72(1): 156-166. DOI: 10.1016/j.jhep.2019.09.014.
|
[33] |
LIU XL, PAN Q, CAO HX, et al. Lipotoxic hepatocyte-derived exosomal microRNA 192-5p activates macrophages through Rictor/Akt/Forkhead box transcription factor O1 signaling in nonalcoholic fatty liver disease[J]. Hepatology, 2020, 72(2): 454-469. DOI: 10.1002/hep.31050.
|
[34] |
XU M, XU H H, LIN Y, et al. LECT2, a Ligand for tie1, plays a crucial role in liver fibrogenesis[J]. Cell, 2019, 178(6): 1478-1492. e20. DOI: 10.1016/j.cell.2019.07.021.
|
[35] |
YE L, CAO Z, LAI X, et al. Niacin Ameliorates hepatic steatosis by inhibiting De Novo lipogenesis via a GPR109A-Mediated PKC-ERK1/2-AMPK signaling pathway in C57BL/6 mice fed a high-fat diet[J]. J Nutr, 2020, 150(4): 672-684. DOI: 10.1093/jn/nxz303.
|
[36] |
BARROW F, KHAN S, WANG H, et al. The emerging role of B cells in the pathogenesis of NAFLD[J]. Hepatology, 2021, 74(4): 2277-2286. DOI: 10.1002/hep.31889.
|
[37] |
OGRESTA D, MRZLJAK A, CIGROVSKI BERKOVIC M, et al. Coagulation and endothelial dysfunction associated with NAFLD: current status and therapeutic implications[J]. J Clin Transl Hepatol, 2022, 10(2): 339-355. DOI: 10.14218/JCTH.2021.00268.
|
[38] |
BRESLIN JW, YANG Y, SCALLAN JP, et al. Lymphatic vessel network structure and physiology[J]. Compr Physiol, 2018, 9(1): 207-299. DOI: 10.1002/cphy.c180015.
|
[39] |
TAMBURINI B, FINLON JM, GILLEN AE, et al. Chronic liver disease in humans causes expansion and differentiation of liver lymphatic endothelial cells[J]. Front Immunol, 2019, 10: 1036. DOI: 10.3389/fimmu.2019.01036.
|
[40] |
BURCHILL MA, FINLON JM, GOLDBERG AR, et al. Oxidized low-density lipoprotein drives dysfunction of the liver lymphatic system[J]. Cell Mol Gastroenterol Hepatol, 2021, 11(2): 573-595. DOI: 10.1016/j.jcmgh.2020.09.007.
|
[41] |
DUONG CN, VESTWEBER D. Mechanisms ensuring endothelial junction integrity beyond VE-cadherin[J]. Front Physiol, 2020, 11: 519. DOI: 10.3389/fphys.2020.00519.
|
[42] |
TAMBURINI B, FINLON JM, GILLEN AE, et al. Chronic liver disease in humans causes expansion and differentiation of liver lymphatic endothelial cells[J]. Front Immunol, 2019, 10: 1036. DOI: 10.3389/fimmu.2019.01036.
|
[43] |
BURCHILL MA, FINLON JM, GOLDBERG AR, et al. Oxidized low-density lipoprotein drives dysfunction of the liver lymphatic system[J]. Cell Mol Gastroenterol Hepatol, 2021, 11(2): 573-595. DOI: 10.1016/j.jcmgh.2020.09.007.
|
[44] |
SCHUPPAN D, SURABATTULA R, WANG XY. Determinants of fibrosis progression and regression in NASH[J]. J Hepatol, 2018, 68(2): 238-250. DOI: 10.1016/j.jhep.2017.11.012.
|
[45] |
YILDIZ E, EL ALAM G, PERINO A, et al. Hepatic lipid overload triggers biliary epithelial cell activation via E2Fs[J]. Elife, 2023. DOI: 10.7554/eLife.81926.
|
[46] |
YANG P, WANG Y, TANG W, et al. Western diet induces severe nonalcoholic steatohepatitis, ductular reaction, and hepatic fibrosis in liver CGI-58 knockout mice[J]. Sci Rep, 2020, 10(1): 4701. DOI: 10.1038/s41598-020-61473-6.
|
[47] |
CLOUGH GF, CHIPPERFIELD AJ, THANAJ M, et al. Dysregulated neurovascular control underlies declining microvascular functionality in people with non-alcoholic fatty liver disease (NAFLD) at risk of liver fibrosis[J]. Front Physiol, 2020, 11: 551. DOI: 10.3389/fphys.2020.00551.
|
[48] |
ADORI C, DARAIO T, KUIPER R, et al. Disorganization and degeneration of liver sympathetic innervations in nonalcoholic fatty liver disease revealed by 3D imaging[J]. Sci Adv, 2021, 7(30): eabg5733. DOI: 10.1126/sciadv.abg5733.
|
[49] |
HURR C, SIMONYAN H, MORGAN DA, et al. Liver sympathetic denervation reverses obesity-induced hepatic steatosis[J]. J Physiol, 2019, 597(17): 4565-4580. DOI: 10.1113/JP277994.
|
[50] |
CLOUGH GF, CHIPPERFIELD AJ, THANAJ M, et al. Dysregulated neurovascular control underlies declining microvascular functionality in people with non-alcoholic fatty liver disease (NAFLD) at risk of liver fibrosis[J]. Front Physiol, 2020, 11: 551. DOI: 10.3389/fphys.2020.00551.
|
[51] |
PRANDONI P. Is there a link between venous and arterial thrombosis? A reappraisal[J]. Intern Emerg Med, 2020, 15(1): 33-36. DOI: 10.1007/s11739-019-02238-6.
|
[52] |
ZUO R, YE LF, HUANG Y, et al. Hepatic small extracellular vesicles promote microvascular endothelial hyperpermeability during NAFLD via novel-miRNA-7[J]. J Nanobiotechnology, 2021, 19(1): 396. DOI: 10.1186/s12951-021-01137-3.
|