[1] |
SHI XG, LING F. Research progress of brucellosis[J]. Zhejiang J Prev Med, 2014, 26(6): 576-580. DOI: 10.19485/j.cnki.issn1007-0931.2014.06.011.
施旭光, 凌锋. 布鲁氏菌病研究进展[J]. 浙江预防医学, 2014, 26(6): 576-580. DOI: 10.19485/j.cnki.issn1007-0931.2014.06.011.
|
[2] |
GAO YH, ZHAO LJ, SUN DJ, et al. Status and perspective of basic research of prevention and control of brucellosis[J]. Sci Sin Vitae, 2014, 44(6): 628-635. DOI: 10.1360/N052013-00064.
高彦辉, 赵丽军, 孙殿军, 等. 布鲁氏菌病防治基础研究现状与展望[J]. 中国科学: 生命科学, 2014, 44(6): 628-635. DOI: 10.1360/N052013-00064.
|
[3] |
WANG JY, NING B, JING W, et al. Research progress and suggestions regarding on the prevention and control of brucellosis in China: A review[J]. Chin Vet Sci, 2022, 52(12): 1578-1585. DOI: 10.16656/j.issn.1673-4696.2022.0203.
汪洁英, 宁博, 景伟, 等. 布鲁氏菌病及其在我国的防控现状与建议[J]. 中国兽医科学, 2022, 52(12): 1578-1585. DOI: 10.16656/j.issn.1673-4696.2022.0203.
|
[4] |
TIAN YY, GAO HX, SUN Q, et al. Analysis of clinical characteristics of brucellosis[J]. China Med Herald, 2021, 18(13): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202113023.htm
田岳飏, 高会霞, 孙倩, 等. 布鲁菌病临床特征分析[J]. 中国医药导报, 2021, 18(13): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202113023.htm
|
[5] |
LI HY. Research progress on laboratory detection methods of brucellosis[J]. J Bingtuan Med, 2013, 38(4): 46-48. https://www.cnki.com.cn/Article/CJFDTOTAL-BTYU201304025.htm
李红叶. 布鲁氏菌病实验室检测方法研究进展[J]. 兵团医学, 2013, 38(4): 46-48. https://www.cnki.com.cn/Article/CJFDTOTAL-BTYU201304025.htm
|
[6] |
QIU YH, WANG J, HE SY. Research progress on the prevalence, detection and prevention of human brucellosis[J]. Chin J Clin Pathol, 2015, 7(3): 187-188, 172. DOI: 10.3969/j.issn.1674-7151.2015.03.014.
邱宇鹤, 王锦, 何淑云. 人布鲁氏菌病的流行、检测与防治研究进展[J]. 实用检验医师杂志, 2015, 7(3): 187-188, 172. DOI: 10.3969/j.issn.1674-7151.2015.03.014.
|
[7] |
ZHANG Z, GAO HX, TIAN YY, et al. Application of hypervariable octameric oligonucleotide finger-prints genotyping on molecular epidemiologic study of Brucellosis in Shijiazhuang[J]. China Med Herald, 2022, 19(28): 154-157. DOI: 10.20047/j.issn1673-7210.2022.28.35.
张志, 高会霞, 田岳飏, 等. 高变八聚体寡核苷酸指纹基因分型法在石家庄地区布鲁氏菌分子流行病学研究中的应用[J]. 中国医药导报, 2022, 19(28): 154-157. DOI: 10.20047/j.issn1673-7210.2022.28.35.
|
[8] |
YANG XH, SKYBERG JA, CAO L, et al. Progress in Brucella vaccine development[J]. Front Biol, 2013, 8(1): 60-77. DOI: 10.1007/s11515-012-1196-0.
|
[9] |
GOMEZ G, ADAMS LG, RICE-FICHT A, et al. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis[J]. Front Cell Infect Microbiol, 2013, 3: 17. DOI: 10.3389/fcimb.2013.00017.
|
[10] |
YANG J, ZHAO XL. Diagnosis method and prevention and control measures of brucellosis[J]. Beifang Muye, 2022(11): 28. https://www.cnki.com.cn/Article/CJFDTOTAL-BFMY202211021.htm
杨景, 赵新利. 布鲁氏菌病诊断方法与防控措施[J]. 北方牧业, 2022(11): 28. https://www.cnki.com.cn/Article/CJFDTOTAL-BFMY202211021.htm
|
[11] |
SÁEZ D, FERNÁNDEZ P, RIVERA A, et al. Oral immunization of mice with recombinant Lactococcus lactis expressing Cu, Zn superoxide dismutase of Brucella abortus triggers protective immunity[J]. Vaccine, 2012, 30(7): 1283-1290. DOI: 10.1016/j.vaccine.2011.12.088.
|
[12] |
PASCUAL DW, YANG XH, WANG HB, et al. Alternative strategies for vaccination to brucellosis[J]. Microbes Infect, 2018, 20(9-10): 599-605. DOI: 10.1016/j.micinf.2017.12.006.
|
[13] |
LIU CF, ZHAI JB, LIANG C, et al. Research progress in new brucellosis vaccine types[J]. Chin J Zoonoses, 2022, 38(12): 1141-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRSZ202212015.htm
刘晨芳, 翟景波, 梁晨, 等. 布鲁氏菌病新型疫苗研究进展[J]. 中国人兽共患病学报, 2022, 38(12): 1141-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRSZ202212015.htm
|
[14] |
HAN WD, QU D. A review on Brucella and its vaccine studies[J]. Chin J Comp Med, 2020, 30(2): 114-120. DOI: 10.3969/j.issn.1671-7856.2020.02.018.
韩文东, 瞿涤. 布鲁氏菌及其疫苗的相关研究[J]. 中国比较医学杂志, 2020, 30(2): 114-120. DOI: 10.3969/j.issn.1671-7856.2020.02.018.
|
[15] |
WANG SY, ZHAO XL, SUN K, et al. Whole-genome sequencing and comparative genomics analysis of Brucella vaccine strain A19[J]. Chin J Zoonoses, 2019, 35(11): 1002-1008. DOI: 10.3969/j.issn.1002-2694.2019.00.163.
王姝懿, 赵学亮, 孙柯, 等. 布鲁氏菌A19疫苗株全基因组测序及比较基因组学分析[J]. 中国人兽共患病学报, 2019, 35(11): 1002-1008. DOI: 10.3969/j.issn.1002-2694.2019.00.163.
|
[16] |
HOU HH, LIU XF, PENG QS. The advances in brucellosis vaccines[J]. Vaccine, 2019, 37(30): 3981-3988. DOI: 10.1016/j.vaccine.2019.05.084.
|
[17] |
GUO JY. Application status and prevention and control measures of Brucellosis vaccine[J]. China Animal Industry, 2021(6): 42-43. DOI: 10.3969/j.issn.2095-2473.2021.06.020.
郭佳怡. 布鲁氏菌病疫苗应用现状与防控措施[J]. 中国畜牧业, 2021(6): 42-43. DOI: 10.3969/j.issn.2095-2473.2021.06.020.
|
[18] |
MA GL, ZHANG J. Application of quantitative pharmacology in vaccine research and de-velopment: Overview and prospect[J]. Chin J Clin Pharmacol Ther, 2023, 28(3): 315-322. DOI: 10.12092/j.issn.1009-2501.2023.03.010.
马广立, 张菁. 定量药理学在疫苗研发中应用的概述与展望[J]. 中国临床药理学与治疗学, 2023, 28(3): 315-322. DOI: 10.12092/j.issn.1009-2501.2023.03.010.
|
[19] |
WU DL, HE S, REN LS, et al. Safety and immune effect of brucellosis live vaccine of A19-VirB12 strain[J]. Grass Feed Livest, 2020(6): 24-31. DOI: 10.16863/j.cnki.1003-6377.2020.06.005.
吴冬玲, 贺笋, 任立松, 等. 布鲁氏菌病活疫苗(A19-ΔVirB12株)的安全性及免疫效果研究[J]. 草食家畜, 2020(6): 24-31. DOI: 10.16863/j.cnki.1003-6377.2020.06.005.
|
[20] |
ZAI XD, YANG QL, LIU K, et al. A comprehensive proteogenomic study of the human Brucella vaccine strain 104 M[J]. BMC Genomics, 2017, 18(1): 402. DOI: 10.1186/s12864-017-3800-9.
|
[21] |
YU D, HUI YM, ZAI XD, et al. Comparative genomic analysis of Brucella abortus vaccine strain 104M reveals a set of candidate genes associated with its virulence attenuation[J]. Virulence, 2015, 6(8): 745-754. DOI: 10.1080/21505594.2015.1038015.
|
[22] |
WANG YF, KE YH, WANG ZJ, et al. Genome sequences of three live attenuated vaccine strains of Brucella species and implications for pathogenesis and differential diagnosis[J]. J Bacteriol, 2012, 194(21): 6012-6013. DOI: 10.1128/JB.01483-12.
|
[23] |
GUPTA S, MOHAN S, SOMANI VK, et al. Simultaneous immunization with Omp25 and L7/L12 provides protection against brucellosis in mice[J]. Pathogens, 2020, 9(2): 152. DOI: 10.3390/pathogens9020152.
|
[24] |
HUY TXN, NGUYEN TT, REYES AWB, et al. Immunization with a combination of four recombinant Brucella abortus proteins Omp16, Omp19, Omp28, and L7/L12 induces T helper 1 immune response against virulent B. abortus 544 infection in BALB/c mice[J]. Front Vet Sci, 2021, 7: 577026. DOI: 10.3389/fvets.2020.577026.
|
[25] |
THOMAS EL, BRACEWELL CD, CORBEL MJ. Characterisation of Brucella abortus strain 19 cultures isolated from vaccinated cattle[J]. Vet Rec, 1981, 108(5): 90-93. DOI: 10.1136/vr.108.5.90.
|
[26] |
QIAN MY, ZHAO TR, LI RH, et al. Targeting the R domain of coagulase by active vaccination protects mice against lethal Staphylococcus aureus infection[J]. Microbes Infect, 2019, 21(3-4): 163-169. DOI: 10.1016/j.micinf.2018.11.001.
|
[27] |
DEAN AS, CRUMP L, GRETER H, et al. Global burden of human brucellosis: A systematic review of disease frequency[J]. PLoS Negl Trop Dis, 2012, 6(10): e1865. DOI: 10.1371/journal.pntd.0001865.
|
[28] |
LI WG, CHEN YT. The status in the research of Brucella_vectored vaccine[J]. J Pathog Biol, 2022, 17(2): 240-242, 246. DOI: 10.13350/j.cjpb.220225.
李文桂, 陈雅棠. 布鲁氏菌载体介导的疫苗研制现状[J]. 中国病原生物学杂志, 2022, 17(2): 240-242, 246. DOI: 10.13350/j.cjpb.220225.
|
[29] |
SCALLAN E, HOEKSTRA RM, ANGULO FJ, et al. Foodborne illness acquired in the United States—Major pathogens[J]. Emerg Infect Dis, 2011, 17(1): 7-15. DOI: 10.3201/eid1701.p11101.
|
[30] |
PAPPAS G, PAPADIMITRIOU P, AKRITIDIS N, et al. The new global map of human brucellosis[J]. Lancet Infect Dis, 2006, 6(2): 91-99. DOI: 10.1016/s1473-3099(06)70382-6.
|
[31] |
EBRIGHT JR, ALTANTSETSEG T, OYUNGEREL R. Emerging infectious diseases in Mongolia[J]. Emerg Infect Dis, 2003, 9(12): 1509-1515. DOI: 10.3201/eid0912.020520.
|
[32] |
PERKINS SD, SMITHER SJ, ATKINS HS. Towards a Brucella vaccine for humans[J]. FEMS Microbiol Rev, 2010, 34(3): 379-394. DOI: 10.1111/j.1574-6976.2010.00211.x.
|
[33] |
PASQUEVICH KA, CARABAJAL MV, GUAIMAS FF, et al. Omp19 enables Brucella abortus to evade the antimicrobial activity from host's proteolytic defense system[J]. Front Immunol, 2019, 10: 1436. DOI: 10.3389/fimmu.2019.01436.
|
[34] |
SHARIFAHMADIAN M, NLEND IU, LECOQ L, et al. The type Ⅳ secretion system core component VirB8 interacts via the β1-strand with VirB10[J]. FEBS Lett, 2017, 591(16): 2491-2500. DOI: 10.1002/1873-3468.12770.
|
[35] |
CASU B, MARY C, SVERZHINSKY A, et al. VirB8 homolog TraE from plasmid pKM101 forms a hexameric ring structure and interacts with the VirB6 homolog TraD[J]. Proc Natl Acad Sci USA, 2018, 115(23): 5950-5955. DOI: 10.1073/pnas.1802501115.
|
[36] |
BIELASZEWSKA M, ALDICK T, BAUWENS A, et al. Hemolysin of enterohemorrhagic Escherichia coli: Structure, transport, biological activity and putative role in virulence[J]. Int J Med Microbiol, 2014, 304(5-6): 521-529. DOI: 10.1016/j.ijmm.2014.05.005.
|
[37] |
DORNELES EMS, TEIXEIRA-CARVALHO A, ARAÚJO MSS, et al. Immune response triggered by Brucella abortus following infection or vaccination[J]. Vaccine, 2015, 33(31): 3659-3666. DOI: 10.1016/j.vaccine.2015.05.057.
|
[38] |
GOOLAB S, ROTH RL, van HEERDEN H, et al. Analyzing the molecular mechanism of lipoprotein localization in Brucella[J]. Front Microbiol, 2015, 6: 1189. DOI: 10.3389/fmicb.2015.01189.
|
[39] |
LACERDA TL, SALCEDO SP, GORVEL JP. Brucella T4SS: The VIP pass inside host cells[J]. Curr Opin Microbiol, 2013, 16(1): 45-51. DOI: 10.1016/j.mib.2012.11.005.
|
[40] |
COLEMAN SA, MINNICK MF. Differential expression of the invasion-associated locus B (ialB) gene of Bartonella bacilliformis in response to environmental cues[J]. Microb Pathog, 2003, 34(4): 179-186. DOI: 10.1016/s0882-4010(03)00005-6.
|
[41] |
van DYK TK, TEMPLETON LJ, CANTERA KA, et al. Characterization of the Escherichia coli AaeAB efflux pump: A metabolic relief valve?[J]. J Bacteriol, 2004, 186(21): 7196-7204. DOI: 10.1128/JB.186.21.7196-7204.2004.
|