[1] |
TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375( 6586): 1254- 1261. DOI: 10.1126/science.abf0529.
|
[2] |
DEV S, KRUSE RL, HAMILTON JP, et al. Wilson disease: update on pathophysiology and treatment[J]. Front Cell Dev Biol, 2022, 10: 871877. DOI: 10.3389/fcell.2022.871877.
|
[3] |
HIMOTO T, MASAKI T. Current trends of essential trace elements in patients with chronic liver diseases[J]. Nutrients, 2020, 12( 7): 2084. DOI: 10.3390/nu12072084.
|
[4] |
HUANG R, CHEN H, LIANG J, et al. Dual role of reactive oxygen species and their application in cancer therapy[J]. J Cancer, 2021, 12( 18): 5543- 5561. DOI: 10.7150/jca.54699.
|
[5] |
ROCHFORD G, MOLPHY Z, KAVANAGH K, et al. Cu(ii) phenanthroline-phenazine complexes dysregulate mitochondrial function and stimulate apoptosis[J]. Metallomics, 2020, 12( 1): 65- 78. DOI: 10.1039/c9mt00187e.
|
[6] |
HILTON JB, WHITE AR, CROUCH PJ. Metal-deficient SOD1 in amyotrophic lateral sclerosis[J]. J Mol Med(Berl), 2015, 93( 5): 481- 487. DOI: 10.1007/s00109-015-1273-3.
|
[7] |
GAŁCZYŃSKA K, DRULIS-KAWA Z, ARABSKI M. Antitumor activity of Pt(II), Ru(III) and Cu(II) complexes[J]. Molecules, 2020, 25( 15): 3492. DOI: 10.3390/molecules25153492.
|
[8] |
SANTORO AM, MONACO I, ATTANASIO F, et al. Copper(II) ions affect the gating dynamics of the 20S proteasome: a molecular and in cell study[J]. Sci Rep, 2016, 6: 33444. DOI: 10.1038/srep33444.
|
[9] |
TSVETKOV P, DETAPPE A, CAI K, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress[J]. Nat Chem Biol, 2019, 15( 7): 681- 689. DOI: 10.1038/s41589-019-0291-9.
|
[10] |
LI Y. Copper homeostasis: Emerging target for cancer treatment[J]. IUBMB Life, 2020, 72( 9): 1900- 1908. DOI: 10.1002/iub.2341.
|
[11] |
PARK KC, FOUANI L, JANSSON PJ, et al. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics[J]. Metallomics, 2016, 8( 9): 874- 886. DOI: 10.1039/c6mt00105j.
|
[12] |
XU J, HUA X, YANG R, et al. XIAP interaction with E2F1 and Sp1 via its BIR2 and BIR3 domains specific activated MMP2 to promote bladder cancer invasion[J]. Oncogenesis, 2019, 8( 12): 71. DOI: 10.1038/s41389-019-0181-8.
|
[13] |
KALITA J, KUMAR V, MISRA UK. A study on apoptosis and anti-apoptotic status in wilson disease[J]. Mol Neurobiol, 2016, 53( 10): 6659- 6667. DOI: 10.1007/s12035-015-9570-y.
|
[14] |
YANG F, LIAO J, PEI R, et al. Autophagy attenuates copper-induced mitochondrial dysfunction by regulating oxidative stress in chicken hepatocytes[J]. Chemosphere, 2018, 204: 36- 43. DOI: 10.1016/j.chemosphere.2018.03.192.
|
[15] |
HAZARI Y, BRAVO-SAN PEDRO JM, HETZ C, et al. Autophagy in hepatic adaptation to stress[J]. J Hepatol, 2020, 72( 1): 183- 196. DOI: 10.1016/j.jhep.2019.08.026.
|
[16] |
POLISHCHUK EV, MEROLLA A, LICHTMANNEGGER J, et al. Activation of autophagy, observed in liver tissues from patients with Wilson disease and from ATP7B-deficient animals, protects hepatocytes from copper-induced apoptosis[J]. Gastroenterology, 2019, 156( 4): 1173- 1189. DOI: 10.1053/j.gastro.2018.11.032.
|
[17] |
GAO W, HUANG Z, DUAN J, et al. Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A[J]. Mol Oncol, 2021, 15( 12): 3527- 3544. DOI: 10.1002/1878-0261.13079.
|
[18] |
LI F, WU X, LIU H, et al. Copper depletion strongly enhances ferroptosis via mitochondrial perturbation and reduction in antioxidative mechanisms[J]. Antioxidants(Basel), 2022, 11( 11): 2084. DOI: 10.3390/antiox11112084.
|
[19] |
GUO H, OUYANG Y, YIN H, et al. Induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects copper-induced spermatogenesis disorder[J]. Redox Biol, 2022, 49: 102227. DOI: 10.1016/j.redox.2021.102227.
|
[20] |
YANG M, WU X, HU J, et al. COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma[J]. J Hepatol, 2022, 76( 5): 1138- 1150. DOI: 10.1016/j.jhep.2022.01.009.
|
[21] |
CHEN M, ZHENG J, LIU G, et al. Ceruloplasmin and hephaestin jointly protect the exocrine pancreas against oxidative damage by facilitating iron efflux[J]. Redox Biol, 2018, 17: 432- 439. DOI: 10.1016/j.redox.2018.05.013.
|
[22] |
ZISCHKA H, LICHTMANNEGGER J, SCHMITT S, et al. Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease[J]. J Clin Invest, 2011, 121( 4): 1508- 1518. DOI: 10.1172/JCI45401.
|
[23] |
HAMILTON JP, KOGANTI L, MUCHENDITSI A, et al. Activation of liver X receptor/retinoid X receptor pathway ameliorates liver disease in Atp7B(-/-)(Wilson disease) mice[J]. Hepatology, 2016, 63( 6): 1828- 1841. DOI: 10.1002/hep.28406.
|
[24] |
MEDICI V, SARODE GV, NAPOLI E, et al. mtDNA depletion-like syndrome in Wilson disease[J]. Liver Int, 2020, 40( 11): 2776- 2787. DOI: 10.1111/liv.14646.
|
[25] |
SHRIBMAN S, POUJOIS A, BANDMANN O, et al. Wilson’s disease: update on pathogenesis, biomarkers and treatments[J]. J Neurol Neurosurg Psychiatry, 2021, 92( 10): 1053- 1061. DOI: 10.1136/jnnp-2021-326123.
|
[26] |
PFEIFFENBERGER J, MOGLER C, GOTTHARDT DN, et al. Hepatobiliary malignancies in Wilson disease[J]. Liver Int, 2015, 35( 5): 1615- 1622. DOI: 10.1111/liv.12727.
|
[27] |
van MEER S, de MAN RA, van DEN BERG AP, et al. No increased risk of hepatocellular carcinoma in cirrhosis due to Wilson disease during long-term follow-up[J]. J Gastroenterol Hepatol, 2015, 30( 3): 535- 539. DOI: 10.1111/jgh.12716.
|
[28] |
YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69( 6): 2672- 2682. DOI: 10.1002/hep.30251.
|
[29] |
HEFFERN MC, PARK HM, AU-YEUNG HY, et al. In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease[J]. Proc Natl Acad Sci U S A, 2016, 113( 50): 14219- 14224. DOI: 10.1073/pnas.1613628113.
|
[30] |
TOSCO A, FONTANELLA B, DANISE R, et al. Molecular bases of copper and iron deficiency-associated dyslipidemia: a microarray analysis of the rat intestinal transcriptome[J]. Genes Nutr, 2010, 5( 1): 1- 8. DOI: 10.1007/s12263-009-0153-2.
|
[31] |
SONG M, SCHUSCHKE DA, ZHOU Z, et al. High fructose feeding induces copper deficiency in Sprague-Dawley rats: a novel mechanism for obesity related fatty liver[J]. J Hepatol, 2012, 56( 2): 433- 440. DOI: 10.1016/j.jhep.2011.05.030.
|
[32] |
AIGNER E, THEURL I, HAUFE H, et al. Copper availability contributes to iron perturbations in human nonalcoholic fatty liver disease[J]. Gastroenterology, 2008, 135( 2): 680- 688. DOI: 10.1053/j.gastro.2008.04.007.
|
[33] |
TALLINO S, DUFFY M, RALLE M, et al. Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease[J]. J Nutr Biochem, 2015, 26( 10): 996- 1006. DOI: 10.1016/j.jnutbio.2015.04.009.
|
[34] |
BUZZETTI E, PARIKH PM, GERUSSI A, et al. Gender differences in liver disease and the drug-dose gender gap[J]. Pharmacol Res, 2017, 120: 97- 108. DOI: 10.1016/j.phrs.2017.03.014.
|
[35] |
LAN Y, WU S, WANG Y, et al. Association between blood copper and nonalcoholic fatty liver disease according to sex[J]. Clin Nutr, 2021, 40( 4): 2045- 2052. DOI: 10.1016/j.clnu.2020.09.026.
|
[36] |
STÄTTERMAYER AF, TRAUSSNIGG S, AIGNER E, et al. Low hepatic copper content and PNPLA3 polymorphism in non-alcoholic fatty liver disease in patients without metabolic syndrome[J]. J Trace Elem Med Biol, 2017, 39: 100- 107. DOI: 10.1016/j.jtemb.2016.08.006.
|
[37] |
EL-RAYAH EA, TWOMEY PJ, WALLACE EM, et al. Both α-1-antitrypsin Z phenotypes and low caeruloplasmin levels are over-represented in alcohol and nonalcoholic fatty liver disease cirrhotic patients undergoing liver transplant in Ireland[J]. Eur J Gastroenterol Hepatol, 2018, 30( 4): 364- 367. DOI: 10.1097/MEG.0000000000001056.
|
[38] |
YANG JD, HAINAUT P, GORES GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16( 10): 589- 604. DOI: 10.1038/s41575-019-0186-y.
|
[39] |
BALDARI S, DI ROCCO G, TOIETTA G. Current biomedical use of copper chelation therapy[J]. Int J Mol Sci, 2020, 21( 3): 1069. DOI: 10.3390/ijms21031069.
|
[40] |
DAVIS CI, GU X, KIEFER RM, et al. Altered copper homeostasis underlies sensitivity of hepatocellular carcinoma to copper chelation[J]. Metallomics, 2020, 12( 12): 1995- 2008. DOI: 10.1039/d0mt00156b.
|
[41] |
PORCU C, ANTONUCCI L, BARBARO B, et al. Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma[J]. Oncotarget, 2018, 9( 10): 9325- 9343. DOI: 10.18632/oncotarget.24282.
|
[42] |
ZHU J, HUANG S, WU G, et al. Lysyl oxidase is predictive of unfavorable outcomes and essential for regulation of vascular endothelial growth factor in hepatocellular carcinoma[J]. Dig Dis Sci, 2015, 60( 10): 3019- 3031. DOI: 10.1007/s10620-015-3734-5.
|
[43] |
CHOI J, CHUNG T, RHEE H, et al. Increased expression of the matrix-modifying enzyme lysyl oxidase-like 2 in aggressive hepatocellular carcinoma with poor prognosis[J]. Gut Liver, 2019, 13( 1): 83- 92. DOI: 10.5009/gnl17569.
|
[44] |
MORISAWA A, OKUI T, SHIMO T, et al. Ammonium tetrathiomolybdate enhances the antitumor effects of cetuximab via the suppression of osteoclastogenesis in head and neck squamous carcinoma[J]. Int J Oncol, 2018, 52( 3): 989- 999. DOI: 10.3892/ijo.2018.4242.
|
[45] |
SINGLA A, CHEN Q, SUZUKI K, et al. Regulation of murine copper homeostasis by members of the COMMD protein family[J]. Dis Model Mech, 2021, 14( 1): dmm045963. DOI: 10.1242/dmm.045963.
|
[46] |
YOSHII J, YOSHIJI H, KURIYAMA S, et al. The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells[J]. Int J Cancer, 2001, 94( 6): 768- 773. DOI: 10.1002/ijc.1537.
|
[47] |
REZAEI A, MAHMOODI M, MOHAMMADIZADEH F, et al. A novel copper(II) complex activated both extrinsic and intrinsic apoptotic pathways in liver cancerous cells[J]. J Cell Biochem, 2019, 120( 8): 12280- 12289. DOI: 10.1002/jcb.28491.
|
[48] |
FANG AP, CHEN PY, WANG XY, et al. Serum copper and zinc levels at diagnosis and hepatocellular carcinoma survival in the Guangdong Liver Cancer Cohort[J]. Int J Cancer, 2019, 144( 11): 2823- 2832. DOI: 10.1002/ijc.31991.
|
[49] |
BAJ J, TERESIŃSKI G, FORMA A, et al. Chronic alcohol abuse alters hepatic trace element concentrations-metallomic study of hepatic elemental composition by means of ICP-OES[J]. Nutrients, 2022, 14( 3): 546. DOI: 10.3390/nu14030546.
|
[50] |
ARAIN SA, KAZI TG, AFRIDI HI, et al. Estimation of copper and iron burden in biological samples of various stages of hepatitis C and liver cirrhosis patients[J]. Biol Trace Elem Res, 2014, 160( 2): 197- 205. DOI: 10.1007/s12011-014-0058-9.
|