[1] |
ESLAM M, SANYAL AJ, GEORGE J. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158( 7): 1999- 2014. DOI: 10.1053/j.gastro.2019.11.312.
|
[2] |
COBBINA E, AKHLAGHI F. Non-alcoholic fatty liver disease(NAFLD)-pathogenesis, classification, and effect on drug metabolizing enzymes and transporters[J]. Drug Metab Rev, 2017, 49( 2): 197- 211. DOI: 10.1080/03602532.2017.1293683.
|
[3] |
DEPRINCE A, HAAS JT, STAELS B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease[J]. Mol Metab, 2020, 42: 101092. DOI: 10.1016/j.molmet.2020.101092.
|
[4] |
ALVES-BEZERRA M, COHEN DE. Triglyceride metabolism in the liver[J]. Compr Physiol, 2017, 8( 1): 1- 8. DOI: 10.1002/cphy.c170012.
|
[5] |
CHÁVEZ-TALAVERA O, TAILLEUX A, LEFEBVRE P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152( 7): 1679- 1694. DOI: 10.1053/j.gastro.2017.01.055.
|
[6] |
WANG XW, SEED B. A PCR primer bank for quantitative gene expression analysis[J]. Nucleic Acids Res, 2003, 31( 24): e154. DOI: 10.1093/nar/gng154.
|
[7] |
O'LEARY NA, WRIGHT MW, BRISTER JR, et al. Reference sequence(RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation[J]. Nucleic Acids Res, 2016, 44( D1): D733- D745. DOI: 10.1093/nar/gkv1189.
|
[8] |
YOUNOSSI ZM, RINELLA ME, SANYAL AJ, et al. From NAFLD to MAFLD: Implications of a premature change in terminology[J]. Hepatology, 2021, 73( 3): 1194- 1198. DOI: 10.1002/hep.31420.
|
[9] |
Italian Association for the Study of the Liver(AISF). AISF position paper on nonalcoholic fatty liver disease(NAFLD): Updates and future directions[J]. Dig Liver Dis, 2017, 49( 5): 471- 483. DOI: 10.1016/j.dld.2017.01.147.
|
[10] |
JIANG TT, SUN FF, ZENG Z, et al. Progress on metabolic associated fatty liver disease related liver cancer[J/CD]. Chin J Liver Dis(Electronic Version), 2022, 14( 3): 14- 17. DOI: 10.3969/j.issn.1674-7380.2022.03.004.
蒋婷婷, 孙芳芳, 曾湛, 等. 代谢相关脂肪性肝病相关肝癌研究进展[J/CD]. 中国肝脏病杂志(电子版), 2022, 14( 3): 14- 17. DOI: 10.3969/j.issn.1674-7380.2022.03.004.
|
[11] |
RIZZOLO D, BUCKLEY K, KONG B, et al. Bile acid homeostasis in a cholesterol 7α-hydroxylase and sterol 27-hydroxylase double knockout mouse model[J]. Hepatology, 2019, 70( 1): 389- 402. DOI: 10.1002/hep.30612.
|
[12] |
WATANABE S, FUJITA K. Dietary hyodeoxycholic acid exerts hypolipidemic effects by reducing farnesoid X receptor antagonist bile acids in mouse enterohepatic tissues[J]. Lipids, 2014, 49( 10): 963- 973. DOI: 10.1007/s11745-014-3947-y.
|
[13] |
SONG M, MA XY, ZHANG FL, et al. Effects of hyodeoxycholic acid on growth performance, energy metabolism and fat digestion and absorption of mice[J]. Chin J Anim Nutr, 2022, 34( 6): 3983- 3990. DOI: 10.3969/j.issn.1006-267x.2022.06.057.
宋敏, 马现永, 张枫琳, 等. 猪去氧胆酸对小鼠生长性能、能量代谢及脂肪消化吸收的影响[J]. 动物营养学报, 2022, 34( 6): 3983- 3990. DOI: 10.3969/j.issn.1006-267x.2022.06.057.
|
[14] |
SEHAYEK E, ONO JG, DUNCAN EM, et al. Hyodeoxycholic acid efficiently suppresses atherosclerosis formation and plasma cholesterol levels in mice[J]. J Lipid Res, 2001, 42( 8): 1250- 1256.
|
[15] |
SHIH DM, SHAPOSHNIK Z, MENG YH, et al. Hyodeoxycholic acid improves HDL function and inhibits atherosclerotic lesion formation in LDLR-knockout mice[J]. FASEB J, 2013, 27( 9): 3805- 3817. DOI: 10.1096/fj.12-223008.
|
[16] |
FORMAN BM, GOODE E, CHEN J, et al. Identification of a nuclear receptor that is activated by farnesol metabolites[J]. Cell, 1995, 81( 5): 687- 693. DOI: 10.1016/0092-8674(95)90530-8.
|
[17] |
PELLICCIARI R, COSTANTINO G, FIORUCCI S. Farnesoid X receptor: From structure to potential clinical applications[J]. J Med Chem, 2005, 48( 17): 5383- 5403. DOI: 10.1021/jm0582221.
|
[18] |
PARKS DJ, BLANCHARD SG, BLEDSOE RK, et al. Bile acids: Natural ligands for an orphan nuclear receptor[J]. Science, 1999, 284( 5418): 1365- 1368. DOI: 10.1126/science.284.5418.1365.
|
[19] |
DOWNES M, VERDECIA MA, ROECKER AJ, et al. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR[J]. Mol Cell, 2003, 11( 4): 1079- 1092. DOI: 10.1016/s1097-2765(03)00104-7.
|
[20] |
PELLICCIARI R, FIORUCCI S, CAMAIONI E, et al. 6alpha-ethyl-chenodeoxycholic acid(6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity[J]. J Med Chem, 2002, 45( 17): 3569- 3572. DOI: 10.1021/jm025529g.
|
[21] |
SAYIN S, WAHLSTRÖM A, FELIN J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist[J]. Cell Metab, 2013, 17( 2): 225- 235. DOI: 10.1016/j.cmet.2013.01.003.
|
[22] |
SUN LL, XIE C, WANG G, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin[J]. Nat Med, 2018, 24( 12): 1919- 1929. DOI: 10.1038/s41591-018-0222-4.
|
[23] |
CHIANG JYL, FERRELL JM. Bile acids as metabolic regulators and nutrient sensors[J]. Annu Rev Nutr, 2019, 39: 175- 200. DOI: 10.1146/annurev-nutr-082018-124344.
|
[24] |
MUELLER M, THORELL A, CLAUDEL T, et al. Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity[J]. J Hepatol, 2015, 62( 6): 1398- 1404. DOI: 10.1016/j.jhep.2014.12.034.
|
[25] |
HARRISON SA, BASHIR MR, LEE KJ, et al. A structurally optimized FXR agonist, MET409, reduced liver fat content over 12 weeks in patients with non-alcoholic steatohepatitis[J]. J Hepatol, 2021, 75( 1): 25- 33. DOI: 10.1016/j.jhep.2021.01.047.
|
[26] |
HAN CY, RHO HS, KIM A, et al. FXR inhibits endoplasmic reticulum stress-induced NLRP3 inflammasome in hepatocytes and ameliorates liver injury[J]. Cell Rep, 2018, 24( 11): 2985- 2999. DOI: 10.1016/j.celrep.2018.07.068.
|
[27] |
JUNG K, KIM M, SO J, et al. Farnesoid X receptor activation impairs liver progenitor cell-mediated liver regeneration via the PTEN-PI3K-AKT-mTOR axis in zebrafish[J]. Hepatology, 2021, 74( 1): 397- 410. DOI: 10.1002/hep.31679.
|
[28] |
FRIEDMAN ES, LI Y, SHEN TC D, et al. FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid[J]. Gastroenterology, 2018, 155( 6): 1741- 1752. DOI: 10.1053/j.gastro.2018.08.022.
|
[29] |
MAKRI E, CHOLONGITAS E, TZIOMALOS K. Emerging role of obeticholic acid in the management of nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2016, 22( 41): 9039- 9043. DOI: 10.3748/wjg.v22.i41.9039.
|
[30] |
XU J, YAO X, LI X, et al. Farnesoid X receptor regulates PI3K/AKT/mTOR signaling pathway, lipid metabolism, and immune response in hybrid grouper[J]. Fish Physiol Biochem, 2022, 48( 6): 1521- 1538. DOI: 10.1007/s10695-022-01130-z.
|
[1] | Peipei GUO, Yang XU, Jiaqi SHI, Yang WU, Lixia LU, Bin LI, Xiaohui YU. Role of amino acid metabolism in autoimmune hepatitis and related therapeutic targets[J]. Journal of Clinical Hepatology, 2025, 41(3): 547-551. doi: 10.12449/JCH250323 |
[2] | Yongping LIU, Yaojie SHEN. Clinical diagnosis of drug-induced autoimmune-like hepatitis[J]. Journal of Clinical Hepatology, 2025, 41(3): 542-546. doi: 10.12449/JCH250322 |
[3] | Qinrong LI, Ying YAO, Zhiyuan XU. Research advances in drug-induced autoimmune-like hepatitis[J]. Journal of Clinical Hepatology, 2024, 40(6): 1255-1258. doi: 10.12449/JCH240628 |
[4] | Xiaodong TENG. Value of biopsy in evaluating the pathological progression of autoimmune hepatitis/pancreatitis[J]. Journal of Clinical Hepatology, 2024, 40(6): 1073-1075. doi: 10.12449/JCH240601 |
[5] | Wenjun YANG. Pathological diagnosis of autoimmune hepatitis[J]. Journal of Clinical Hepatology, 2024, 40(6): 1082-1087. doi: 10.12449/JCH240603 |
[6] | Minghan MA, Yanqi LIU. Treatment of primary biliary cholangitis by targeting intestinal flora[J]. Journal of Clinical Hepatology, 2023, 39(1): 188-191. doi: 10.3969/j.issn.1001-5256.2023.01.029 |
[7] | Longlong LUO, Lifei WANG, Ying ZHENG, Bin LI, Lixia LU, Chuyi LI, Xiaohui YU, Jiucong ZHANG. Research advances in mesenchymal stem cells and their exosomes in treatment of autoimmune hepatitis[J]. Journal of Clinical Hepatology, 2023, 39(12): 2920-2925. doi: 10.3969/j.issn.1001-5256.2023.12.025 |
[8] | Quan ZHOU, Chunlin CAI, Jinqiang LI. Gut-liver axis: Intestinal microbial homeostasis and hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2023, 39(11): 2710-2717. doi: 10.3969/j.issn.1001-5256.2023.11.029 |
[9] | Xiaohan MA, Lixia YANG. Research advances in noninvasive diagnosis of liver fibrosis in autoimmune liver diseases[J]. Journal of Clinical Hepatology, 2023, 39(11): 2689-2696. doi: 10.3969/j.issn.1001-5256.2023.11.026 |
[10] | Fuchun WANG, Ziyi LI, Wanjie ZHANG, Xiaorong MAO, Junfeng LI. The significance of gut microbiota in acute-on-chronic liver failure[J]. Journal of Clinical Hepatology, 2022, 38(7): 1667-1670. doi: 10.3969/j.issn.1001-5256.2022.07.040 |
[11] | Chinese Society of Hepatology, Chinese Medical Association. Guidelines on the diagnosis and management of autoimmune hepatitis (2021)[J]. Journal of Clinical Hepatology, 2022, 38(1): 42-49. doi: 10.3760/cma.j.cn112138-20211112-00796 |
[12] | Yingyu LE, Rongzhen ZHANG, Weisong XIAO, Xiaobin QIN, Shenglan ZENG, Dewen MAO. Gut microbiota regulation and diet therapy for hepatic encephalopathy[J]. Journal of Clinical Hepatology, 2021, 37(7): 1694-1698. doi: 10.3969/j.issn.1001-5256.2021.07.046 |
[13] | Ceng ShengLan, Lu: Chao, Xiao WeiSong, Tan XiaoBin, Wu Cong, Mao DeWen. Mechanism of action of intestinal flora in hepatic encephalopathy and related treatment methods[J]. Journal of Clinical Hepatology, 2020, 36(10): 2375-2379. doi: 10.3969/j.issn.1001-5256.2020.10.047 |
[14] | Li HongShan, Hu YiYang. Gut microecology: An important target of traditional Chinese medicine in the treatment of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2020, 36(1): 14-18. doi: 10.3969/j.issn.1001-5256.2020.01.002 |
[15] | Zheng Wei, Zhang YongHong, Zhao Yan. Role of intestinal microflora in the pathogenesis of hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2019, 35(7): 1613-1615. doi: 10.3969/j.issn.1001-5256.2019.07.041 |
[16] | Fang Dan, Chen ZheYu. Diagnosis and treatment of hepatic alveolar echinococcosis[J]. Journal of Clinical Hepatology, 2017, 33(5): 990-993. doi: 10.3969/j.issn.1001-5256.2017.05.042 |
[17] | Qi WenLei, Wu XinMin, Zhang JianWei, Ye JunFeng, Wang GuangYi. Recommendations for United European Gastroenterology evidence-based guidelines for the diagnosis and therapy of chronic pancreatitis (2017)[J]. Journal of Clinical Hepatology, 2017, 33(9): 1668-1676. doi: 10.3969/j.issn.1001-5256.2017.09.009 |
[18] | Cooperative Group for Hepatic and Gall Diseases, Chinese Society of Gastroenterology, Chinese Medical Association. Expert consensus on diagnosis and treatment of pyrrolidine alkaloids-related sinusoidal obstruction syndrome (2017, Nanjing)[J]. Journal of Clinical Hepatology, 2017, 33(9): 1627-1637. doi: 10.3969/j.issn.1001-5256.2017.09.003 |
[19] | Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Gastroenterology, Chinese Medical Association; Chinese Society of Infectious Diseases, Chinese Medical Association. Consensus on the diagnosis and management of autoimmune hepatitis(2015)[J]. Journal of Clinical Hepatology, 2016, 32(1): 9-22. doi: 10.3969/j.issn.1001-5256.2016.01.002 |
[20] | Wang QianYi, Jia JiDong. Advances in diagnosis and treatment of autoimmune hepatitis[J]. Journal of Clinical Hepatology, 2015, 31(2): 160-162. doi: 10.3969/j.issn.1001-5256.2015.02.003 |