[1] |
MARUYAMA T, MIYAMOTO Y, NAKAMURA T, et al. Identification of membrane-type receptor for bile acids (M-BAR)[J]. Biochem Biophys Res Commun, 2002, 298(5): 714-719. DOI: 10.1016/s0006-291x(02)02550-0.
|
[2] |
DUBOC H, TACHÉ Y, HOFMANN AF. The bile acid TGR5 membrane receptor: from basic research to clinical application[J]. Dig Liver Dis, 2014, 46(4): 302-312. DOI: 10.1016/j.dld.2013.10.021.
|
[3] |
SCHAAP FG, TRAUNER M, JANSEN PL. Bile acid receptors as targets for drug development[J]. Nat Rev Gastroenterol Hepatol, 2014, 11(1): 55-67. DOI: 10.1038/nrgastro.2013.151.
|
[4] |
CHIANG JYL, FERRELL JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): G554-G573. DOI: 10.1152/ajpgi.00223.2019.
|
[5] |
DONEPUDI AC, BOEHME S, LI F, et al. G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice[J]. Hepatology, 2017, 65(3): 813-827. DOI: 10.1002/hep.28707.
|
[6] |
PATHAK P, LIU H, BOEHME S, et al. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism[J]. J Biol Chem, 2017, 292(26): 11055-11069. DOI: 10.1074/jbc.M117.784322.
|
[7] |
KUMAR DP, ASGHARPOUR A, MIRSHAHI F, et al. Activation of transmembrane bile acid receptor TGR5 modulates pancreatic islet α cells to promote glucose homeostasis[J]. J Biol Chem, 2016, 291(13): 6626-6640. DOI: 10.1074/jbc.M115.699504.
|
[8] |
SASAKI T, WATANABE Y, KUBOYAMA A, et al. Muscle-specific TGR5 overexpression improves glucose clearance in glucose-intolerant mice[J]. J Biol Chem, 2021, 296: 100131. DOI: 10.1074/jbc.RA120.016203.
|
[9] |
POLS TW, NOMURA M, HARACH T, et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading[J]. Cell Metab, 2011, 14(6): 747-757. DOI: 10.1016/j.cmet.2011.11.006.
|
[10] |
LI S, QIU M, KONG Y, et al. Bile acid G protein-coupled membrane receptor TGR5 modulates aquaporin 2-mediated water homeostasis[J]. J Am Soc Nephrol, 2018, 29(11): 2658-2670. DOI: 10.1681/ASN.2018030271.
|
[11] |
VELAZQUEZ-VILLEGAS LA, PERINO A, LEMOS V, et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue[J]. Nat Commun, 2018, 9(1): 245. DOI: 10.1038/s41467-017-02068-0.
|
[12] |
LIANG H, MATEI N, MCBRIDE DW, et al. TGR5 activation attenuates neuroinflammation via Pellino3 inhibition of caspase-8/NLRP3 after middle cerebral artery occlusion in rats[J]. J Neuroinflammation, 2021, 18(1): 40. DOI: 10.1186/s12974-021-02087-1.
|
[13] |
HU X, YAN J, HUANG L, et al. INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats[J]. Brain Behav Immun, 2021, 91: 587-600. DOI: 10.1016/j.bbi.2020.09.016.
|
[14] |
JIN P, DENG S, TIAN M, et al. INT-777 prevents cognitive impairment by activating Takeda G protein-coupled receptor 5 (TGR5) and attenuating neuroinflammation via cAMP/ PKA/ CREB signaling axis in a rat model of sepsis[J]. Exp Neurol, 2021, 335: 113504. DOI: 10.1016/j.expneurol.2020.113504.
|
[15] |
DENG L, CHEN X, ZHONG Y, et al. Activation of TGR5 partially alleviates high glucose-induced cardiomyocyte injury by inhibition of inflammatory responses and oxidative stress[J]. Oxid Med Cell Longev, 2019, 2019: 6372786. DOI: 10.1155/2019/6372786.
|
[16] |
WANG J, ZHANG J, LIN X, et al. DCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarction[J]. J Mol Cell Cardiol, 2021, 151: 3-14. DOI: 10.1016/j.yjmcc.2020.10.014.
|
[17] |
LI J, CHENG R, WAN H. Overexpression of TGR5 alleviates myocardial ischemia/reperfusion injury via AKT/GSK-3β mediated inflammation and mitochondrial pathway[J]. Biosci Rep, 2020, 40(1): BSR20193482. DOI: 10.1042/BSR20193482.
|
[18] |
ZHUANG L, DING W, ZHANG Q, et al. TGR5 attenuated liver ischemia-reperfusion injury by activating the Keap1-Nrf2 signaling pathway in mice[J]. Inflammation, 2021, 44(3): 859-872. DOI: 10.1007/s10753-020-01382-y.
|
[19] |
ZHOU H, ZHOU S, SHI Y, et al. TGR5/Cathepsin E signaling regulates macrophage innate immune activation in liver ischemia and reperfusion injury[J]. Am J Transplant, 2021, 21(4): 1453-1464. DOI: 10.1111/ajt.16327.
|
[20] |
LI ZY, ZHOU JJ, LUO CL, et al. Activation of TGR5 alleviates inflammation in rheumatoid arthritis peripheral blood mononuclear cells and in mice with collagen Ⅱ-induced arthritis[J]. Mol Med Rep, 2019, 20(5): 4540-4550. DOI: 10.3892/mmr.2019.10711.
|
[21] |
HU J, WANG C, HUANG X, et al. Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling[J]. Cell Rep, 2021, 36(12): 109726. DOI: 10.1016/j.celrep.2021.109726.
|
[22] |
MERLEN G, BIDAULT-JOURDAINNE V, KAHALE N, et al. Hepatoprotective impact of the bile acid receptor TGR5[J]. Liver Int, 2020, 40(5): 1005-1015. DOI: 10.1111/liv.14427.
|
[23] |
MERLEN G, KAHALE N, URSIC-BEDOYA J, et al. TGR5-dependent hepatoprotection through the regulation of biliary epithelium barrier function[J]. Gut, 2020, 69(1): 146-157. DOI: 10.1136/gutjnl-2018-316975.
|
[24] |
ESLAM M, SANYAL AJ, GEORGE J, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158(7): 1999-2014. e1. DOI: 10.1053/j.gastro.2019.11.312.
|
[25] |
SHI Y, SU W, ZHANG L, et al. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation[J]. Front Immunol, 2020, 11: 609060. DOI: 10.3389/fimmu.2020.609060.
|
[26] |
DING L, SOUSA KM, JIN L, et al. Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice[J]. Hepatology, 2016, 64(3): 760-773. DOI: 10.1002/hep.28689.
|
[27] |
FINN PD, RODRIGUEZ D, KOHLER J, et al. Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(3): G412-G424. DOI: 10.1152/ajpgi.00300.2018.
|
[28] |
ARAB JP, KARPEN SJ, DAWSON PA, et al. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives[J]. Hepatology, 2017, 65(1): 350-362. DOI: 10.1002/hep.28709.
|
[29] |
SINGAL AK, BATALLER R, AHN J, et al. ACG clinical guideline: Alcoholic liver disease[J]. Am J Gastroenterol, 2018, 113(2): 175-194. DOI: 10.1038/ajg.2017.469.
|
[30] |
SPATZ M, CIOCAN D, MERLEN G, et al. Bile acid-receptor TGR5 deficiency worsens liver injury in alcohol-fed mice by inducing intestinal microbiota dysbiosis[J]. JHEP Rep, 2021, 3(2): 100230. DOI: 10.1016/j.jhepr.2021.100230.
|
[31] |
FAN M, WANG Y, JIN L, et al. Bile acid-mediated activation of brown fat protects from alcohol-induced steatosis and liver injury in mice[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(3): 809-826. DOI: 10.1016/j.jcmgh.2021.12.001.
|
[32] |
IRACHETA-VELLVE A, CALENDA CD, PETRASEK J, et al. FXR and TGR5 agonists ameliorate liver injury, steatosis, and inflammation after binge or prolonged alcohol feeding in mice[J]. Hepatol Commun, 2018, 2(11): 1379-1391. DOI: 10.1002/hep4.1256.
|
[33] |
DYSON JK, BEUERS U, JONES D, et al. Primary sclerosing cholangitis[J]. Lancet, 2018, 391(10139): 2547-2559. DOI: 10.1016/S0140-6736(18)30300-3.
|
[34] |
VESTERHUS M, KARLSEN TH. Emerging therapies in primary sclerosing cholangitis: pathophysiological basis and clinical opportunities[J]. J Gastroenterol, 2020, 55(6): 588-614. DOI: 10.1007/s00535-020-01681-z.
|
[35] |
KEITEL V, REICH M, HÄUSSINGER D. TGR5: pathogenetic role and/or therapeutic target in fibrosing cholangitis?[J]. Clin Rev Allergy Immunol, 2015, 48(2-3): 218-225. DOI: 10.1007/s12016-014-8443-x.
|
[36] |
REICH M, SPOMER L, KLINDT C, et al. Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis[J]. J Hepatol, 2021, 75(3): 634-646. DOI: 10.1016/j.jhep.2021.03.029.
|
[37] |
BAGHDASARYAN A, CLAUDEL T, GUMHOLD J, et al. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO3- output[J]. Hepatology, 2011, 54(4): 1303-1312. DOI: 10.1002/hep.24537.
|
[38] |
YOKODA RT, RODRIGUEZ EA. Review: Pathogenesis of cholestatic liver diseases[J]. World J Hepatol, 2020, 12(8): 423-435. DOI: 10.4254/wjh.v12.i8.423.
|
[39] |
KEITEL V, HÄUSSINGER D. Role of TGR5 (GPBAR1) in liver disease[J]. Semin Liver Dis, 2018, 38(4): 333-339. DOI: 10.1055/s-0038-1669940.
|
[40] |
BIDAULT-JOURDAINNE V, MERLEN G, GLÉNISSON M, et al. TGR5 controls bile acid composition and gallbladder function to protect the liver from bile acid overload[J]. JHEP Rep, 2020, 3(2): 100214. DOI: 10.1016/j.jhepr.2020.100214.
|
[41] |
KLINDT C, REICH M, HELLWIG B, et al. The G protein-coupled bile acid receptor TGR5 (Gpbar1) modulates endothelin-1 signaling in liver[J]. Cells, 2019, 8(11): 1467. DOI: 10.3390/cells8111467.
|
[42] |
YANG H, LUO F, WEI Y, et al. TGR5 protects against cholestatic liver disease via suppressing the NF-κB pathway and activating the Nrf2/HO-1 pathway[J]. Ann Transl Med, 2021, 9(14): 1158. DOI: 10.21037/atm-21-2631.
|
[43] |
RAO J, YANG C, YANG S, et al. Deficiency of TGR5 exacerbates immune-mediated cholestatic hepatic injury by stabilizing the β-catenin destruction complex[J]. Int Immunol, 2020, 32(5): 321-334. DOI: 10.1093/intimm/dxaa002.
|
[44] |
GUTIÉRREZ-REBOLLEDO GA, SIORDIA-REYES AG, MECKES-FISCHER M, et al. Hepatoprotective properties of oleanolic and ursolic acids in antitubercular drug-induced liver damage[J]. Asian Pac J Trop Med, 2016, 9(7): 644-651. DOI: 10.1016/j.apjtm.2016.05.015.
|
[45] |
MACZEWSKY J, KAISER J, GRESCH A, et al. TGR5 activation promotes stimulus-secretion coupling of pancreatic β-cells via a PKA-dependent pathway[J]. Diabetes, 2019, 68(2): 324-336. DOI: 10.2337/db18-0315.
|
[46] |
RAJAGOPAL S, KUMAR DP, MAHAVADI S, et al. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac-and PKA-mediated inhibition of RhoA/Rho kinase pathway[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 304(5): G527-G535. DOI: 10.1152/ajpgi.00388.2012.
|
[47] |
XUE C, LI Y, LV H, et al. Oleanolic acid targets the gut-liver axis to alleviate metabolic disorders and hepatic steatosis[J]. J Agric Food Chem, 2021, 69(28): 7884-7897. DOI: 10.1021/acs.jafc.1c02257.
|
[48] |
LIU J, WANG X, LIU R, et al. Oleanolic acid co-administration alleviates ethanol-induced hepatic injury via Nrf-2 and ethanol-metabolizing modulating in rats[J]. Chem Biol Interact, 2014, 221: 88-98. DOI: 10.1016/j.cbi.2014.07.017.
|
[49] |
LIU J, LU YF, WU Q, et al. Oleanolic acid reprograms the liver to protect against hepatotoxicants, but is hepatotoxic at high doses[J]. Liver Int, 2019, 39(3): 427-439. DOI: 10.1111/liv.13940.
|
[50] |
MLALA S, OYEDEJI AO, GONDWE M, et al. Ursolic acid and its derivatives as bioactive agents[J]. Molecules, 2019, 24(15): 2751. DOI: 10.3390/molecules24152751.
|
[51] |
SUNDARESAN A, RADHIGA T, PUGALENDI KV. Effect of ursolic acid and Rosiglitazone combination on hepatic lipid accumulation in high fat diet-fed C57BL/6J mice[J]. Eur J Pharmacol, 2014, 741: 297-303. DOI: 10.1016/j.ejphar.2014.07.032.
|
[52] |
CHENG J, LIU Y, LIU Y, et al. Ursolic acid alleviates lipid accumulation by activating the AMPK signaling pathway in vivo and in vitro[J]. J Food Sci, 2020, 85(11): 3998-4008. DOI: 10.1111/1750-3841.15475.
|
[53] |
YAN X, REN X, LIU X, et al. Dietary ursolic acid prevents alcohol-induced liver injury via gut-liver axis homeostasis modulation: The key role of microbiome manipulation[J]. J Agric Food Chem, 2021, 69(25): 7074-7083. DOI: 10.1021/acs.jafc.1c02362.
|
[54] |
HORIBA T, KATSUKAWA M, MITA M, et al. Dietary obacunone supplementation stimulates muscle hypertrophy, and suppresses hyperglycemia and obesity through the TGR5 and PPARγ pathway[J]. Biochem Biophys Res Commun, 2015, 463(4): 846-852. DOI: 10.1016/j.bbrc.2015.06.022.
|
[55] |
DING L, YANG Q, ZHANG E, et al. Notoginsenoside Ft1 acts as a TGR5 agonist but FXR antagonist to alleviate high fat diet-induced obesity and insulin resistance in mice[J]. Acta Pharm Sin B, 2021, 11(6): 1541-1554. DOI: 10.1016/j.apsb.2021.03.038.
|
[56] |
JIANG LS, LI W, ZHUANG TX, et al. Ginsenoside ro ameliorates high-fat diet-induced obesity and insulin resistance in mice via activation of the G protein-coupled bile acid receptor 5 pathway[J]. J Pharmacol Exp Ther, 2021, 377(3): 441-451. DOI: 10.1124/jpet.120.000435.
|
[57] |
HE K, HU Y, MA H, et al. Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways[J]. Biochim Biophys Acta, 2016, 1862(9): 1696-1709. DOI: 10.1016/j.bbadis.2016.06.006.
|