中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Role of intestinal microbiota and metabolites in the development, progression, and treatment of nonalcoholic fatty liver disease

DOI: 10.3969/j.issn.1001-5256.2023.08.006
Research funding:

National Natural Science Foundation of China (NSFC) (82170585);

National Natural Science Foundation of China (NSFC) (81970507);

The Project of Key Medical Discipline in Guangzhou (2021-2023);

Guangzhou Planned Project of Science and Technology (SL2022A03J01100);

National Natural Science Foundation of Guangdong Province (2021A1515011290)

More Information
  • Corresponding author: ZHOU Yongjian, eyzhouyongjian@scut.edu.cn (ORCID: 0000-0003-1721-7639)
  • Received Date: 2023-05-04
  • Accepted Date: 2023-06-04
  • Published Date: 2023-08-20
  • Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease around the world. There is a close structural and functional relationship between the liver and the intestine, namely "the gut-liver axis", in which intestinal microbiota can participate in the development and progression of NAFLD through microbial translocation, production of endogenous ethanol, abnormal regulation of bile acid metabolism and choline metabolism, and endotoxemia. This article reviews the role of intestinal microbiota and metabolites in the development, progression, and treatment of NAFLD.

     

  • [1]
    XIAO J, WANG F, WONG NK, et al. Global liver disease burdens and research trends: Analysis from a Chinese perspective[J]. J Hepatol, 2019, 71(1): 212-221. DOI: 10.1016/j.jhep.2019.03.004.
    [2]
    KIM D, TOUROS A, KIM WR. Nonalcoholic fatty liver disease and metabolic syndrome[J]. Clin Liver Dis, 2018, 22(1): 133-140. DOI: 10.1016/j.cld.2017.08.010.
    [3]
    BUZZETTI E, PINZANI M, TSOCHATZIS EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048. DOI: 10.1016/j.metabol.2015.12.012.
    [4]
    ECKBURG PB, BIK EM, BERNSTEIN CN, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728): 1635-1638. DOI: 10.1126/science.1110591.
    [5]
    WANG B, JIANG X, CAO M, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease[J]. Sci Rep, 2016, 6: 32002. DOI: 10.1038/srep32002.
    [6]
    PARKS DJ, BLANCHARD SG, BLEDSOE RK, et al. Bile acids: natural ligands for an orphan nuclear receptor[J]. Science, 1999, 284(5418): 1365-1368. DOI: 10.1126/science.284.5418.1365.
    [7]
    CHIANG J. Bile acid metabolism and signaling in liver disease and therapy[J]. Liver Res, 2017, 1(1): 3-9. DOI: 10.1016/j.livres.2017.05.001.
    [8]
    CHÁVEZ-TALAVERA O, TAILLEUX A, LEFEBVRE P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152(7): 1679-1694. e3. DOI: 10.1053/j.gastro.2017.01.055.
    [9]
    ARAB JP, KARPEN SJ, DAWSON PA, et al. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives[J]. Hepatology, 2017, 65(1): 350-362. DOI: 10.1002/hep.28709.
    [10]
    CYPHERT HA, GE X, KOHAN AB, et al. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21[J]. J Biol Chem, 2012, 287(30): 25123-25138. DOI: 10.1074/jbc.M112.375907.
    [11]
    MINARD AY, TAN SX, YANG P, et al. mTORC1 is a major regulatory node in the FGF21 signaling network in adipocytes[J]. Cell Rep, 2016, 17(1): 29-36. DOI: 10.1016/j.celrep.2016.08.086.
    [12]
    DUTCHAK PA, KATAFUCHI T, BOOKOUT AL, et al. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones[J]. Cell, 2012, 148(3): 556-567. DOI: 10.1016/j.cell.2011.11.062.
    [13]
    MOURIES J, BRESCIA P, SILVESTRI A, et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development[J]. J Hepatol, 2019, 71(6): 1216-1228. DOI: 10.1016/j.jhep.2019.08.005.
    [14]
    LOU G, MA X, FU X, et al. GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells[J]. PLoS One, 2014, 9(4): e93567. DOI: 10.1371/journal.pone.0093567.
    [15]
    WAHLSTRÖM A, SAYIN SI, MARSCHALL HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41-50. DOI: 10.1016/j.cmet.2016.05.005.
    [16]
    HOUTEN SM, WATANABE M, AUWERX J. Endocrine functions of bile acids[J]. EMBO J, 2006, 25(7): 1419-1425. DOI: 10.1038/sj.emboj.7601049.
    [17]
    den BESTEN G, van EUNEN K, GROEN AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. J Lipid Res, 2013, 54(9): 2325-2340. DOI: 10.1194/jlr.R036012.
    [18]
    CHAKRABORTI CK. New-found link between microbiota and obesity[J]. World J Gastrointest Pathophysiol, 2015, 6(4): 110-119. DOI: 10.4291/wjgp.v6.i4.110.
    [19]
    MOUZAKI M, LOOMBA R. Insights into the evolving role of the gut microbiome in nonalcoholic fatty liver disease: rationale and prospects for therapeutic intervention[J]. Therap Adv Gastroenterol, 2019, 12: 1756284819858470. DOI: 10.1177/1756284819858470.
    [20]
    SVEGLIATI-BARONI G, SACCOMANNO S, RYCHLICKI C, et al. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis[J]. Liver Int, 2011, 31(9): 1285-1297. DOI: 10.1111/j.1478-3231.2011.02462.x.
    [21]
    SMITH PM, HOWITT MR, PANIKOV N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145): 569-573. DOI: 10.1126/science.1241165.
    [22]
    ZHOU D, PAN Q, XIN FZ, et al. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier[J]. World J Gastroenterol, 2017, 23(1): 60-75. DOI: 10.3748/wjg.v23.i1.60.
    [23]
    SHARIFNIA T, ANTOUN J, VERRIERE TG, et al. Hepatic TLR4 signaling in obese NAFLD[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 309(4): G270-G278. DOI: 10.1152/ajpgi.00304.2014.
    [24]
    CECCARELLI S, PANERA N, MINA M, et al. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease[J]. Oncotarget, 2015, 6(39): 41434-41452. DOI: 10.18632/oncotarget.5163.
    [25]
    NIGHOT M, AL-SADI R, GUO S, et al. Lipopolysaccharide-induced increase in intestinal epithelial tight permeability is mediated by toll-like receptor 4/Myeloid differentiation primary response 88 (MyD88) activation of myosin light chain kinase expression[J]. Am J Pathol, 2017, 187(12): 2698-2710. DOI: 10.1016/j.ajpath.2017.08.005.
    [26]
    HARTE AL, da SILVA NF, CREELY SJ, et al. Elevated endotoxin levels in non-alcoholic fatty liver disease[J]. J Inflamm (Lond), 2010, 7: 15. DOI: 10.1186/1476-9255-7-15.
    [27]
    ENGSTLER AJ, AUMILLER T, DEGEN C, et al. Insulin resistance alters hepatic ethanol metabolism: studies in mice and children with non-alcoholic fatty liver disease[J]. Gut, 2016, 65(9): 1564-1571. DOI: 10.1136/gutjnl-2014-308379.
    [28]
    ZHU L, BAKER SS, GILL C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH[J]. Hepatology, 2013, 57(2): 601-609. DOI: 10.1002/hep.26093.
    [29]
    BAKER SS, BAKER RD, LIU W, et al. Role of alcohol metabolism in non-alcoholic steatohepatitis[J]. PLoS One, 2010, 5(3): e9570. DOI: 10.1371/journal.pone.0009570.
    [30]
    CHEN X, ZHANG Z, LI H, et al. Endogenous ethanol produced by intestinal bacteria induces mitochondrial dysfunction in non-alcoholic fatty liver disease[J]. J Gastroenterol Hepatol, 2020, 35(11): 2009-2019. DOI: 10.1111/jgh.15027.
    [31]
    MIR H, MEENA AS, CHAUDHRY KK, et al. Occludin deficiency promotes ethanol-induced disruption of colonic epithelial junctions, gut barrier dysfunction and liver damage in mice[J]. Biochim Biophys Acta, 2016, 1860(4): 765-774. DOI: 10.1016/j.bbagen.2015.12.013.
    [32]
    HARTMANN P, SEEBAUER CT, MAZAGOVA M, et al. Deficiency of intestinal mucin-2 protects mice from diet-induced fatty liver disease and obesity[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(5): G310-322. DOI: 10.1152/ajpgi.00094.2015.
    [33]
    CORBIN KD, ZEISEL SH. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression[J]. Curr Opin Gastroenterol, 2012, 28(2): 159-165. DOI: 10.1097/MOG.0b013e32834e7b4b.
    [34]
    YE JZ, LI YT, WU WR, et al. Dynamic alterations in the gut microbiota and metabolome during the development of methionine-choline-deficient diet-induced nonalcoholic steatohepatitis[J]. World J Gastroenterol, 2018, 24(23): 2468-2481. DOI: 10.3748/wjg.v24.i23.2468.
    [35]
    BARREA L, ANNUNZIATA G, MUSCOGIURI G, et al. Trimethylamine- N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome[J]. Nutrients, 2018, 10(12): 1971. DOI: 10.3390/nu10121971.
    [36]
    ROMANO KA, MARTINEZ-DEL CAMPO A, KASAHARA K, et al. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption[J]. Cell Host Microbe, 2017, 22(3): 279-290. e7. DOI: 10.1016/j.chom.2017.07.021.
    [37]
    GAO X, LIU X, XU J, et al. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet[J]. J Biosci Bioeng, 2014, 118(4): 476-481. DOI: 10.1016/j.jbiosc.2014.03.001.
    [38]
    JÄGER R, MOHR AE, CARPENTER KC, et al. International society of sports nutrition position stand: probiotics[J]. J Int Soc Sports Nutr, 2019, 16(1): 62. DOI: 10.1186/s12970-019-0329-0.
    [39]
    ZHAO Z, WANG C, ZHANG L, et al. Lactobacillus plantarum NA136 improves the non-alcoholic fatty liver disease by modulating the AMPK/Nrf2 pathway[J]. Appl Microbiol Biotechnol, 2019, 103(14): 5843-5850. DOI: 10.1007/s00253-019-09703-4.
    [40]
    BRISKEY D, HERITAGE M, JASKOWSKI LA, et al. Probiotics modify tight-junction proteins in an animal model of nonalcoholic fatty liver disease[J]. Therap Adv Gastroenterol, 2016, 9(4): 463-472. DOI: 10.1177/1756283X16645055.
    [41]
    ALISI A, BEDOGNI G, BAVIERA G, et al. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis[J]. Aliment Pharmacol Ther, 2014, 39(11): 1276-1285. DOI: 10.1111/apt.12758.
    [42]
    SEPIDEH A, KARIM P, HOSSEIN A, et al. Effects of multistrain probiotic supplementation on glycemic and inflammatory indices in patients with nonalcoholic fatty liver disease: a double-blind randomized clinical trial[J]. J Am Coll Nutr, 2016, 35(6): 500-505. DOI: 10.1080/07315724.2015.1031355.
    [43]
    ZVENIGORODSKAIA LA, CHERKASHOVA EA, SAMSONOVA NG, et al. Advisability of using probiotics in the treatment of atherogenic dyslipidemia[J]. Eksp Klin Gastroenterol, 2011, (2): 37-43.
    [44]
    SHAVAKHI A, MINAKARI M, FIROUZIAN H, et al. Effect of a probiotic and metformin on liver aminotransferases in non-alcoholic steatohepatitis: a double blind randomized clinical trial[J]. Int J Prev Med, 2013, 4(5): 531-537.
    [45]
    PACHIKIAN BD, ESSAGHIR A, DEMOULIN JB, et al. Prebiotic approach alleviates hepatic steatosis: implication of fatty acid oxidative and cholesterol synthesis pathways[J]. Mol Nutr Food Res, 2013, 57(2): 347-359. DOI: 10.1002/mnfr.201200364.
    [46]
    CANI PD, POSSEMIERS S, van de WIELE T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability[J]. Gut, 2009, 58(8): 1091-1103. DOI: 10.1136/gut.2008.165886.
    [47]
    RASO GM, SIMEOLI R, IACONO A, et al. Effects of a Lactobacillus paracasei B21060 based synbiotic on steatosis, insulin signaling and toll-like receptor expression in rats fed a high-fat diet[J]. J Nutr Biochem, 2014, 25(1): 81-90. DOI: 10.1016/j.jnutbio.2013.09.006.
    [48]
    MALAGUARNERA M, VACANTE M, ANTIC T, et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis[J]. Dig Dis Sci, 2012, 57(2): 545-553. DOI: 10.1007/s10620-011-1887-4.
    [49]
    LE ROY T, LLOPIS M, LEPAGE P, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice[J]. Gut, 2013, 62(12): 1787-1794. DOI: 10.1136/gutjnl-2012-303816.
    [50]
    XUE L, DENG Z, LUO W, et al. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: a randomized clinical trial[J]. Front Cell Infect Microbiol, 2022, 12: 759306. DOI: 10.3389/fcimb.2022.759306.
  • Relative Articles

    [1]Yu ZHANG, Yongfeng YANG. Thinking of the pathological diagnosis of unexplained liver cirrhosis[J]. Journal of Clinical Hepatology, 2023, 39(3): 498-503. doi: 10.3969/j.issn.1001-5256.2023.03.003
    [2]Xixuan WANG, Liangzi DING, Yang CHENG, Hao HAN, Jian YANG, Jiangqiang XIAO, Yi WANG, Ming ZHANG, Feng ZHANG, Yuzheng ZHUGE. Value of liver stiffness measured by acoustic radiation force impulse in diagnosis of cirrhotic portal hypertension[J]. Journal of Clinical Hepatology, 2022, 38(11): 2488-2492. doi: 10.3969/j.issn.1001-5256.2022.11.010
    [3]Jialing ZHOU, Bingqiong WANG, Yameng SUN, Tongtong MENG, Shanshan WU, Hong MA, Xiaojuan OU, Hong YOU, Jidong JIA, Xiaoning WU. Application value of liver stiffness measurement-to-platelet ratio index score in diagnosis of hepatitis B liver fibrosis and liver cirrhosis[J]. Journal of Clinical Hepatology, 2022, 38(7): 1529-1533. doi: 10.3969/j.issn.1001-5256.2022.07.014
    [4]Zhongjie YU, Wenxia ZHAO, Leixin FENG, Hanxiao WANG, Jianpeng LIU. Value of five noninvasive diagnostic methods for liver cirrhosis in diagnosis of traditional Chinese medicine syndrome types in patients with compensated hepatitis B cirrhosis[J]. Journal of Clinical Hepatology, 2022, 38(1): 104-109. doi: 10.3969/j.issn.1001-5256.2022.01.016
    [5]Yajie XU, Wenzheng YOU, Wanlei REN, Quanhe LONG, Xiangjun JIANG, Doudou HU. Application of pathological indicators based on liver biopsy in the diagnosis of cirrhotic portal hypertension[J]. Journal of Clinical Hepatology, 2021, 37(12): 2935-2938. doi: 10.3969/j.issn.1001-5256.2021.12.042
    [6]Yu WANG, Min WANG, Guanhua ZHANG, Fuliang HE, Xiaojuan OU, Jidong JIA. Clinical diagnosis, staging, and therapeutic principles of liver cirrhosis[J]. Journal of Clinical Hepatology, 2021, 37(1): 17-21. doi: 10.3969/j.issn.1001-5256.2021.01.004
    [7]NIU XingJie, LIU ZhiHui, CUI FengMei, LIU YaoMin, WANG YanFei, ZHANG GuoMin, LIU JinXia. Value of peripheral blood long non-coding RNA-LET in the diagnosis of chronic hepatitis B cirrhosis[J]. Journal of Clinical Hepatology, 2020, 36(12): 2709-2713. doi: 10.3969/j.issn.1001-5256.2020.12.014
    [8]Zhou ShengYun, Duan ZhiHui. Noninvasive diagnosis of esophageal varices in liver cirrhosis[J]. Journal of Clinical Hepatology, 2020, 36(8): 1842-1846. doi: 10.3969/j.issn.1001-5256.2020.08.036
    [9]Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Gastroenterology, Chinese Medical Association; Chinese Society of Infectious Diseases, Chinese Medical Association. Consensus on the diagnosis and therapy of hepatic fibrosis(2019)[J]. Journal of Clinical Hepatology, 2019, 35(10): 2163-2172. doi: 10.3969/j.issn.1001-5256.2019.10.007
    [10]Li JiaNa, Zheng RuiQi, Li Na, Hu YuLin. The biological characteristics of GP73 and its value in the diagnosis of liver fibrosis and cirrhosis[J]. Journal of Clinical Hepatology, 2019, 35(6): 1361-1364. doi: 10.3969/j.issn.1001-5256.2019.06.040
    [11]Zhang YaNan, Jiang Chang, Xu Ying, Gao YanHang. Early diagnosis of spontaneous bacterial peritonitis in liver cirrhosis[J]. Journal of Clinical Hepatology, 2019, 35(8): 1851-1853. doi: 10.3969/j.issn.1001-5256.2019.08.045
    [12]Liu HaiFeng, Xu YongSheng, Zhang Yue, Zhao XiaoJu, Liu Zhao, Li JinKui, Yan RuiFeng, Xu Kai, Lei JunQiang. Value of magnetic resonance morphological imaging in the diagnosis and differentiation of post-hepatitis B cirrhosis[J]. Journal of Clinical Hepatology, 2018, 34(12): 2587-2591. doi: 10.3969/j.issn.1001-5256.2018.12.016
    [13]Yang ErNa, Cao WuKui. Research advances in noninvasive diagnosis of hepatic fibrosis[J]. Journal of Clinical Hepatology, 2017, 33(11): 2209-2213. doi: 10.3969/j.issn.1001-5256.2017.11.035
    [14]Du JingHua, Nan YueMin. Novel molecular diagnostic markers for liver fibrosis[J]. Journal of Clinical Hepatology, 2017, 33(3): 445-450. doi: 10.3969/j.issn.1001-5256.2017.03.009
    [15]Zhang Hui, Jia Lei, Lu: Dong, Xu YouQing. Value of serum cancer antigen12-5 level in diagnosis of peritoneal effusion in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2016, 32(11): 2118-2120. doi: 10.3969/j.issn.1001-5256.2016.11.022
    [16]Deng Han, Qi XingShun, Zhu Qiang, Guo XiaoZhong. Alternative methods for diagnosis of esophageal varices in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2016, 32(8): 1468-1473. doi: 10.3969/j.issn.1001-5256.2016.08.007
    [17]Zhao Wei. Clinical significance of plasma  and urine neutrophil gelatinase-associated lipocalin levels in diagnosis of acute kindney injury  in patients with cirrhosis[J]. Journal of Clinical Hepatology, 2015, 31(11): 1874-1877. doi: 10.3969/j.issn.1001-5256.2015.11.025
    [18]Wang Shuai, Hu DaRong. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites[J]. Journal of Clinical Hepatology, 2015, 31(7): 1018-1022. doi: 10.3969/j.issn.1001-5256.2015.07.005
    [19]Cai JunJun, Han Tao. Diagnosis and treatment of acute kidney injury in patients with cirrhosis[J]. Journal of Clinical Hepatology, 2014, 30(12): 1352-1356. doi: 10.3969/j.issn.1001-5256.2014.12.030
    [20]Jia KeDong, Shi ShuXian, Ruan YouBing. Detection of sialic acid in hepatitis involved liver cirrhosis and its significance for HCC diagnosis[J]. Journal of Clinical Hepatology, 2005, 21(2): 101-103.
  • Cited by

    Periodical cited type(11)

    1. 阳丽华,梁英,刘仁峰,刘志昂. 甲状腺癌与甲状腺肿患者相关实验室指标的比较分析. 甘肃医药. 2025(01): 53-55+59 .
    2. 张海苗. HBV感染原发性肝癌患者血常规指标的检测意义. 包头医学院学报. 2024(02): 67-71 .
    3. 戴倩梅,丁体龙,代雪枫,于莉,陈策. 高敏丙型肝炎病毒核糖核酸在丙型肝炎中的诊断价值. 检验医学与临床. 2024(04): 487-490 .
    4. 李晓宇,黄秀香,叶迎宾. 血清壳多糖酶3样蛋白1和PLT的比值与FIB-4指数在慢性乙型肝炎轻、中度诊断效价的比较. 标记免疫分析与临床. 2024(09): 1693-1697 .
    5. 何萍,徐瑞,华秋菊,姜璐,王维平. 红细胞分布宽度与血小板比值对终末期肾病维持性血液透析患者动静脉内瘘失功的预测分析. 中国医师进修杂志. 2024(11): 988-994 .
    6. 岳丽,孙佳瑶,刘龙芳. 脑小血管病患者外周血GPR30 mRNA、PLR、NPAS4表达及与认知功能、短期预后的关系. 临床误诊误治. 2023(01): 69-74 .
    7. 杨杨,刘付弟,曾方林. 人类免疫缺陷病毒/乙型肝炎病毒合并感染者CD4~+T细胞计数和乙型肝炎病毒复制、中性粒细胞与淋巴细胞比值水平的相关性. 中国医药导报. 2023(10): 145-148 .
    8. 王跃帮,常珊碧,王梦林,崔倩,裴兵. RLR在HBV相关性肝硬化诊断中的应用. 热带医学杂志. 2023(10): 1451-1455 .
    9. 邱建华. PLT联合凝血功能检测对早期肝硬化的诊断价值分析. 现代诊断与治疗. 2023(22): 3433-3435 .
    10. 赵霄君,谢建刚,段楚君,刘善收,王倩梅,思艺,王林潇,吴丹,王一帆,李俊杰. 血常规指标与脓毒症患者短期预后的相关性研究. 临床误诊误治. 2022(08): 73-77 .
    11. 邵林楠,张树婷,王霓,周世航,刘铭. 血细胞各比值对慢性丙型肝炎病毒患者肝纤维化程度的评估. 临床血液学杂志. 2022(12): 874-877 .

    Other cited types(7)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 3.3 %FULLTEXT: 3.3 %META: 91.8 %META: 91.8 %PDF: 4.9 %PDF: 4.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.8 %其他: 4.8 %其他: 0.3 %其他: 0.3 %China: 0.5 %China: 0.5 %India: 0.3 %India: 0.3 %Russian Federation: 0.3 %Russian Federation: 0.3 %Taiwan, China: 1.0 %Taiwan, China: 1.0 %上海: 2.3 %上海: 2.3 %北京: 5.8 %北京: 5.8 %南宁: 0.3 %南宁: 0.3 %台州: 0.3 %台州: 0.3 %吉林: 0.8 %吉林: 0.8 %哥伦布: 0.5 %哥伦布: 0.5 %天津: 0.3 %天津: 0.3 %广州: 0.5 %广州: 0.5 %张家口: 4.5 %张家口: 4.5 %成都: 0.3 %成都: 0.3 %杭州: 1.3 %杭州: 1.3 %格兰特县: 0.3 %格兰特县: 0.3 %芒廷维尤: 32.6 %芒廷维尤: 32.6 %芝加哥: 0.3 %芝加哥: 0.3 %莫斯科: 1.0 %莫斯科: 1.0 %西宁: 41.7 %西宁: 41.7 %长春: 0.5 %长春: 0.5 %其他其他ChinaIndiaRussian FederationTaiwan, China上海北京南宁台州吉林哥伦布天津广州张家口成都杭州格兰特县芒廷维尤芝加哥莫斯科西宁长春

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1071) PDF downloads(232) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return