[1] LIU JQ, ZHOU SM. Research advances in intestinal flora in nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2017, 33 (12) :2453-2456. (in Chinese) 刘嘉琪, 周少明.非酒精性脂肪性肝病肠道菌群的研究进展[J].临床肝胆病杂志, 2017, 33 (12) :2453-2456.
|
[2] WIEST R, LAWSON M, GEUKING M. Pathological bacterial translocation in liver cirrhosis[J]. J Hepatol, 2014, 60 (1) :197-209.
|
[3] OIKONOMOU T, PAPATHEODORIDIS GV, SAMARKOS M, et al. Clinical impact of microbiome in patients with decompensated cirrhosis[J]. World J Gastroenterol, 2018, 24 (34) :3813-3820.
|
[4] ZHANG J, FENG Z, LIU P, et al. Research advances in the association between gut microbiota and complications after liver transplantation[J]. Ogran Transplantation, 2017, 8 (5) :399-401. (in Chinese) 张静, 冯哲, 刘鹏, 等.肠道菌群与肝移植相互作用研究进展[J].器官移植, 2017, 8 (5) :399-401.
|
[5] LU BJ, ZHAO YH, AN YT, et al. Research advances in gut microbiota in liver cirrhosis and related complications[J]. J Clin Hepatol, 2018, 34 (11) :2433-2437. (in Chinese) 鲁冰洁, 赵亚红, 安泳潼, 等.肠道微生物在肝硬化及相关并发症中的研究进展[J].临床肝胆病杂志, 2018, 34 (11) :2433-2437.
|
[6] SPADONI I, ZAGATO E, BERTOCCHI A, et al. A gut-vascular barrier controls the systemic dissemination of bacteria[J].Science, 2015, 350 (6262) :830-834.
|
[7] FOUTS DE, TORRALBA M, NELSON KE, et al. Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease[J]. J Hepatol, 2012, 56 (6) :1283-1292.
|
[8] ASSIMAKOPOULOS SF, TSAMANDAS AC, TSIAOUSSIS GI, et al. Altered intestinal tight junctions’expression in patients with liver cirrhosis:A pathogenetic mechanism of intestinal hyperpermeability[J]. Eur J Clin Invest, 2012, 42 (4) :439-446.
|
[9] KARTHIKEYAN A, MOHAN P, CHINNAKALI P, et al. Elevated systemic zonula occludens 1 is positively correlated with inflammation in cirrhosis[J]. Clin Chim Acta, 2018, 480:193-198.
|
[10] RAPARELLI V, BASILI S, CARNEVALE R, et al. Low-grade endotoxemia and platelet activation in cirrhosis[J]. Hepatology, 2017, 65 (2) :571-581.
|
[11] RAM AK, POTTAKAT B, VAIRAPPAN B. Increased systemic zonula occludens 1 associated with inflammation and independent biomarker in patients with hepatocellular carcinoma[J]. BMC Cancer, 2018, 18 (1) :572.
|
[12] ARAB JP, MARTIN-MATEOS RM, SHAH VH. Gut-liver axis, cirrhosis and portal hypertension:The chicken and the egg[J]. Hepatol Int, 2018, 12 (Suppl 1) :24-33.
|
[13] TSIAOUSSIS GI, PAPAIOANNOU EC, KOUREA EP, et al. Expression ofα-defensins, CD20+B-lymphocytes, and intraepithelial CD3+T-lymphocytes in the intestinal mucosa of patients with liver cirrhosis:Emerging mediators of intestinal barrier function[J]. Dig Dis Sci, 2018, 63 (10) :2582-2592.
|
[14] SHI H, LV L, CAO H, et al. Bacterial translocation aggravates CCl4-induced liver cirrhosis by regulating CD4+T cells in rats[J]. Sci Rep, 2017, 7:40516.
|
[15] WANG S, CHARBONNIER LM, NOVAL RIVAS M, et al. My D88adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism[J]. Immunity, 2015, 43 (2) :289-303.
|
[16] MUOZ L, BORRERO MJ, U'BEDA M, et al. Intestinal immune dysregulation driven by dysbiosis promotes barrier disruption and bacterial translocation in rats with cirrhosis[J]. Hepatology, 2018.[Epub ahead of print]
|
[17] HARTMANN P, CHEN P, WANG HJ, et al. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice[J]. Hepatology, 2013, 58 (1) :108-119.
|
[18] TELTSCHIK Z, WIEST R, BEISNER J, et al. Intestinal bacterial translocation in rats with cirrhosis is related to compromised Paneth cell antimicrobial host defense[J]. Hepatology, 2012, 55 (4) :1154-1163.
|
[19] WANG J, HUANG N, XIONG J, et al. Caprylic acid and nonanoic acid upregulate endogenous host defense peptides to enhance intestinal epithelial immunological barrier function via histone deacetylase inhibition[J]. Int Immunopharmacol, 2018, 65:303-311.
|
[20] U'BEDA M, LARIO M, MUOZ L, et al. Obeticholic acid reduces bacterial translocation and inhibits intestinal inflammation in cirrhotic rats[J]. J Hepatol, 2016, 64 (5) :1049-1057.
|
[21] SINGH J, METRANI R, SHIVANAGOUDRA SR, et al. Review on bile acids:Effects of the gut microbiome, interactions with dietary fiber, and alterations in the bioaccessibility of bioactive compounds[J]. J Agric Food Chem, 2019.[Epub ahead of print]
|
[22] LU LG, HU JF. Research advances in the association between gut microbiota and bile acid[J]. J Intern Med Concepts Pract, 2018, 13 (6) :329-333. (in Chinese) 陆伦根, 胡江峰.肠道菌群与胆汁酸的研究进展[J].内科理论与实践, 2018, 13 (6) :329-333.
|
[23] KAKIYAMA G, PANDAK WM, GILLEVET PM, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis[J]. J Hepatol, 2013, 58 (5) :949-955.
|
[24] GIANNELLI V, DI GREGORIO V, IEBBA V, et al. Microbiota and the gut-liver axis:Bacterial translocation, inflammation and infection in cirrhosis[J]. World J Gastroenterol, 2014, 20 (45) :16795-16810.
|
[25] RIDLON JM, ALVES JM, HYLEMON PB, et al. Cirrhosis, bile acids and gut microbiota:Unraveling a complex relationship[J]. Gut Microbes. 2013. 4 (5) :382-387.
|
[26] BAJAJ JS, HEUMAN DM, HYLEMON PB, et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications[J]. J Hepatol, 2014, 60 (5) :940-947.
|
[27] SARANGI AN, GOEL A, SINGH A, et al. Faecal bacterial microbiota in patients with cirrhosis and the effect of lactulose administration[J]. BMC Gastroenterol, 2017, 17 (1) :125.
|
[28] MASLENNIKOV R, PAVLOV C, IVASHKIN V. Small intestinal bacterial overgrowth in cirrhosis:Systematic review and meta-analysis[J]. Hepatol Int, 2018, 12 (6) :567-576.
|
[29] THEOCHARIDOU E, DHAR A, PATCH D. Gastrointestinal motility disorders and their clinical implications in cirrhosis[J].Gastroenterol Res Pract, 2017, 2017:8270310.
|
[30] TETZ GV, RUGGLES KV, ZHOU H, et al. Bacteriophages as potential new mammalian pathogens[J]. Sci Rep, 2017, 7 (1) :7043.
|
[31] YANG AM, INAMINE T, HOCHRATH K, et al. Intestinal fungi contribute to development of alcoholic liver disease[J]. J Clin Invest, 2017, 127 (7) :2829-2841.
|
1. | 秦鹏,李树森,刘皓,吴广迎. 胃冠状静脉栓塞术在门脉高压性上消化道出血经颈静脉肝内门腔静脉分流术患者中的临床疗效. 血管与腔内血管外科杂志. 2022(09): 1130-1134 . ![]() | |
2. | 高绍,王宏亮,聂春晖,张岳林,周坦洋,余子牛,杨月,孙军辉. 对比TIPS联合胃冠状静脉栓塞术与单独TIPS治疗肝硬化门静脉高压伴上消化道出血的中远期疗效:Meta分析. 中国介入影像与治疗学. 2022(11): 673-677 . ![]() | |
3. | 张大维,吴东辉,孙兴安. TIPS对肝硬化并发上消化道出血患者近期肝肾功能和远期疗效的影响. 当代医学. 2021(35): 129-130 . ![]() | |
4. | 林纲毅,马洺远,蔡宗洋. 超声引导下门静脉穿刺导引经颈静脉肝内门体分流术联合曲张静脉栓塞治疗食管胃底静脉曲张破裂出血的临床效果. 中国当代医药. 2020(07): 113-116 . ![]() | |
5. | 王宁,林芳明,吕明. TIPS联合GCVE用于门静脉高压并发上消化道大出血的应用价值. 肝脏. 2020(09): 952-954 . ![]() | |
6. | 韩志强. 肝硬化上消化道出血37例外科临床治疗效果观察. 世界最新医学信息文摘. 2019(05): 95+102 . ![]() | |
7. | 张明礼. PTVE联合PSE治疗肝硬化门脉高压并上消化道出血的观察. 实用中西医结合临床. 2019(05): 24-26 . ![]() | |
8. | 孙允涛. 肝硬化门静脉高压并发上消化道出血的相关危险因素分析. 中国民康医学. 2019(10): 81-83 . ![]() | |
9. | 孙巧玉,赖雪珍,河源媛. 门脉高压合并上消化道出血采用PTVE联合PSE手术的效果分析. 现代消化及介入诊疗. 2019(08): 837-841+846 . ![]() | |
10. | 杨荣焕. TIPS和PTVE介入方法治疗肝硬化门静脉高压引起的上消化道出血的优劣差异. 黑龙江医学. 2019(09): 1012-1013+1016 . ![]() | |
11. | 武和平. 不同介入途径胃冠状静脉栓塞术治疗肝硬化门静脉高压出血的临床疗效观察. 现代消化及介入诊疗. 2018(02): 208-210 . ![]() | |
12. | 李广忠. 分析肝硬化门脉高压症下食管静脉曲张破裂出血的危险因素. 智慧健康. 2018(07): 91-92+126 . ![]() | |
13. | 李贤圣,董勤勇,张乐,夏侨,贺军. 经颈静脉门静脉分流术介入治疗门静脉高压引起上消化道出血的疗效分析. 浙江创伤外科. 2018(02): 272-273 . ![]() | |
14. | 赵晓飞,林栋栋,李宁,臧运金,郭庆良,武聚山. 门静脉高压患者脾切断流术后曲张静脉再出血的危险因素分析. 临床肝胆病杂志. 2018(10): 2182-2185 . ![]() | |
15. | 吴笋. 经颈静脉肝内门体静脉分流术加胃冠状静脉栓塞术治疗门脉高压症初探. 现代医用影像学. 2018(05): 1522-1523+1528 . ![]() | |
16. | 田广俊,池晓玲,常钢,孟凡喆,曹敏玲,黎英贤,徐浩祥,梁宏才,赵朋涛,吴晓菊,萧焕明. 中药灌肠防治TIPS治疗肝硬化门静脉高压伴上消化道出血术后肝性脑病临床观察. 新中医. 2018(12): 87-91 . ![]() | |
17. | 樊春燕,叶晓丽,戴晓婷,吴宇清. 肝硬化门静脉高压并发上消化道出血的相关性分析研究. 血管与腔内血管外科杂志. 2018(05): 381-385 . ![]() | |
18. | 彭虹. 肝硬化门静脉高压并发上消化道出血的相关危险因素分析. 中国继续医学教育. 2017(31): 58-59 . ![]() | |
19. | 张志勇. 不同手术方案治疗肝硬化门脉高压症的临床对比. 临床医药文献电子杂志. 2017(46): 8924-8925 . ![]() | |
20. | 向平,张川,张亮科,唐瑞强,叶继彬. 1例上消化道出血病人护理体会. 世界最新医学信息文摘. 2016(14): 247 . ![]() |