中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Role of silent information regulator 4 in the development and progression of liver diseases

DOI: 10.3969/j.issn.1001-5256.2020.02.049
Research funding:

 

  • Received Date: 2019-09-23
  • Published Date: 2020-02-20
  • Silent information regulators are a family of highly conserved nicotinamide adenine dinucleotide( NAD+)-dependent deacetylases and has seven members( Sirt1-7). Silent information regulator 4( Sirt4),localized in the mitochondria,possesses the activity of deacetylase,ADP-ribosyltransferase,NAD+-dependent lipoamidase,and deacylase,participates in post-translational modification of mitochondrial proteins,and regulates multiple metabolic processes. Since metabolic dysfunction is closely associated with liver diseases,the role and regulatory mechanism of Sirt4 in liver diseases has attracted more and more attention. This article elaborates on the role of Sirt4 in viral hepatitis,nonalcoholic fatty liver disease,liver fibrosis,and hepatocellular carcinoma,in order to provide new perspectives for the prevention and treatment of these liver diseases.

     

  • [1] FU M,LIU M,SAUVE AA,et al. Hormonal control of androgen receptor function through SIRT1[J]. Mol Cell Biol,2006,26(21):8122-8135.
    [2] NAKAGAWA T,LOMB DJ,HAIGIS MC,et al. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle[J]. Cell,2009,137(3):560-570.
    [3] ANDERSON KA,HUYNH FK,FISHER-WELLMAN K,et al.SIRT4 is a lysine deacylase that controls leucine metabolism and insulin secretion[J]. Cell Metab,2017,25(4):838-855.
    [4] MIN Z,GAO J,YU Y. The roles of mitochondrial SIRT4 in cellular metabolism[J]. Front Endocrinol(Lausanne),2019,9:783.
    [5] HAIGIS MC,MOSTOSLAVSKY R,HAIGIS KM,et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells[J]. Cell,2006,126(5):941-954.
    [6] AHUJA N,SCHWER B,CAROBBIO S,et al. Regulation of insulin secretion by SIRT4,a mitochondrial ADP-ribosyltransferase[J]. J Biol Chem,2007,282(46):33583-33592.
    [7] DU J,JIANG H,LIN H. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD[J]. Biochemistry,2009,48(13):2878-2890.
    [8] LAURENT G,GERMAN NJ,SAHA AK,et al. SIRT4 controls the balance between lipid synthesis and catabolism by repressing malonyl-Co A decarboxylase[J]. BMC Proc,2012,6(Suppl 3):p30.
    [9] FELDMAN JL,BAEZA J,DENU JM. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins[J]. J Biol Chem,2013,288(43):31350-31356.
    [10] VERDIN E,DEQUIEDT F,FISCHLE W,et al. Measurement of mammalian histone deacetylase activity[J]. Methods Enzymol,2004,377:180-196.
    [11] PENG C,LU Z,XIE Z,et al. The first identification of lysine malonylation substrates and its regulatory enzyme[J]. Mol Cell Proteomics,2011,10(12):M111. 012658.
    [12] MATHIAS RA,GRECO TM,OBERSTEIN A,et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity[J]. Cell,2014,159(7):1615-1625.
    [13] DENG JJ,KONG K E,GAO WW,et al. Interplay between SIRT1 and hepatitis B virus X protein in the activation of viral transcription[J]. Biochim Biophys Acta Gene Regul Mech,2017,1860(4):491-501.
    [14] LUO YX,TANG X,AN XZ,et al. SIRT4 accelerates Ang IIinduced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity[J]. Eur Heart J,2017,38(18):1389-1398.
    [15] LANG A,GRETHER-BECK S,SINGH M,et al. MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4[J]. Aging(Albany NY),2016,8(3):484-505.
    [16] WU T,LIU YH,FU YC,et al. Direct evidence of sirtuin downregulation in the liver of non-alcoholic fatty liver disease patients[J]. Ann Clin Lab Sci,44(4):410-418.
    [17] SHETH SG,GORDON FD,CHOPRA S. Nonalcoholic steatohepatitis[J]. Ann Intern Med,1997,126(2):137-145.
    [18] GUO L,ZHOU SR,WEI XB,et al. Acetylation of mitochondrial trifunctional proteinα-subunit enhances its stability to promote fatty acid oxidation and is decreased in nonalcoholic fatty liver disease[J]. Mol Cell Biol,2016,36(20):2553-2567.
    [19] LAURENT G,de BOER VC,FINLEY LW,et al. SIRT4 represses peroxisome proliferator-activated receptorαactivity to suppress hepatic fat oxidation[J]. Mol Cell Biol,2013,33(22):4552-4561.
    [20] LANG A,ANAND R,ALTINOLUK-HAMBCHEN S,et al.SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy[J]. Aging(Albany NY),2017,9(10):2163-2189.
    [21] FARCAS M,GAVREA AA,GULEI D,et al. SIRT1 in the development and treatment of hepatocellular carcinoma[J]. Front Nutr,2019,6:148.
    [22] KIM HS,VASSILOPOULOS A,WANG RH,et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity[J]. Cancer Cell,2011,20(4):487-499.
    [23] CHEN J,CHAN AW,TO KF,et al. SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-3β/β-catenin signaling[J]. Hepatology,2013,57(6):2287-2298.
    [24] ZHANG R,WANG C,TIAN Y,et al. SIRT5 promotes hepatocellular carcinoma progression by regulating mitochondrial apoptosis[J]. J Cancer,2019,10(16):3871-3882.
    [25] WANG JX,YI Y,LI YW,et al. Down-regulation of sirtuin 3 is associated with poor prognosis in hepatocellular carcinoma after resection[J]. BMC Cancer,2014,14:297.
    [26] HAN LL,JIA L,WU F,et al. Sirtuin6(SIRT6)promotes the EMT of hepatocellular carcinoma by stimulating autophagic degradation of E-cadherin[J]. Mol Cancer Res,2019,17(11):2267-2280.
    [27] CHEN X,DING X,WU Q,et al. Monomethyltransferase SET8facilitates hepatocellular carcinoma growth by enhancing aerobic glycolysis[J]. Cell Death Dis,2019,10(4):312.
    [28] WANG YS,DU L,LIANG X,et al. Sirtuin 4 depletion promotes hepatocellular carcinoma tumorigenesis through regulating adenosine-monophosphate-activated protein kinase alpha/mammalian target of rapamycin axis in mice[J]. Hepatology,2019,69(4):1614-1631.
    [29] YOU M,JOGASURIA A,TAYLOR C,et al. Sirtuin 1 signaling and alcoholic fatty liver disease[J]. Hepatobiliary Surg Nutr,2015,4(2):88-100.
    [30] ARTEAGA M,SHANG N,DING X,et al. Inhibition of SIRT2suppresses hepatic fibrosis[J]. Am J Physiol Gastrointest Liver Physiol,2016,310(11):g1155-g1168.
    [31] CHENG ST,REN JH,CAI XF,et al. HBx-elevated SIRT2promotes HBV replication and hepatocarcinogenesis[J]. Biochem Biophys Res Commun,2018,496(3):904-910.
    [32] KIM JK,NOH JH,JUNG KH,et al. Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b[J]. Hepatology,2013,57(3):1055-1067.
    [33] HO L,TITUS AS,BANERJEE KK,et al. SIRT4 regulates ATP homeostasis and mediates a retrograde signaling via AMPK[J]. Aging(Albany NY),2013,5(11):835-849.
    [34] SAUNDERS LR,VERDIN E. Sirtuins:Critical regulators at the crossroads between cancer and aging[J]. Oncogene,2007,26(37):5489-5504.
    [35] MEI Z,ZHANG X,YI J,et al. Sirtuins in metabolism,DNA repair and cancer[J]. J Exp Clin Cancer Res,2016,35(1):182.
    [36] JENNIFER S,LEI L,ANDREW M,et al. Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid[J]. J Neurochem,2014,131(5):573-581.
  • Relative Articles

    [1]Zhao JinHua, Li JunFeng, Mao XiaoRong. Effect of T-lymphocyte phenotype on immune status in chronic hepatitis B virus infection and its application value[J]. Journal of Clinical Hepatology, 2020, 36(5): 1019-1023. doi: 10.3969/j.issn.1001-5256.2020.05.014
    [2]Chen Bin, Zhang Tao, Zhu WenFang, Peng Jie, Zhang QianQian, Li YunFang, Ding XiuLi. Effect of the warming and heat-clearing method on the percentage of regulatory T lymphocytes/T helper 17 cells in rats with acute-on-chronic liver failure[J]. Journal of Clinical Hepatology, 2018, 34(12): 2642-2647. doi: 10.3969/j.issn.1001-5256.2018.12.026
    [3]Gao WeiHua, Ge KuanXue, Xiang XiaoXing. Association of Th17 cells, regulatory T cells, and their imbalance with nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2018, 34(6): 1347-1350. doi: 10.3969/j.issn.1001-5256.2018.06.046
    [4]Wang Yan, Huang YouYing, Ma Yan, Guo Feng, Wang XiaoBo, Wang XiaoZhong. Expression features of follicular helper T cells in peripheral blood in patients with chronic hepatitis B[J]. Journal of Clinical Hepatology, 2018, 34(1): 58-62. doi: 10.3969/j.issn.1001-5256.2018.01.012
    [5]Ge KuanXue, Gao WeiHua, Xiang XiaoXing. Association of regulatory T cells, T helper 17 cells, and change in their balance with autoimmune hepatitis[J]. Journal of Clinical Hepatology, 2018, 34(7): 1573-1576. doi: 10.3969/j.issn.1001-5256.2018.07.045
    [6]Li JianYun, Tu ChuanQing, He De, Wang DianWen, Huang Can, Zhang XuYan, Feng Chun. Clinical significance of measurement of T lymphocyte subsets before splenectomy in patients with primary immune thrombocytopenia[J]. Journal of Clinical Hepatology, 2017, 33(1): 150-154. doi: 10.3969/j.issn.1001-5256.2017.01.033
    [7]He JunNan, Zhao ShouSong. Research advances in association between regulatory T cells and hepatitis B virus infection[J]. Journal of Clinical Hepatology, 2016, 32(2): 361-365. doi: 10.3969/j.issn.1001-5256.2016.02.036
    [8]Zhang FeiFei, Chen Hui, Lyu Jun. Role of T-helper cell 17 in the development and progression of hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2016, 32(8): 1626-1629. doi: 10.3969/j.issn.1001-5256.2016.08.046
    [9]Ji LongShan, Sun XueHua, Zhou ZhenHua, Zhang Xin, Gao YaTing, Gao YueQiu, Li Man. Role of follicular helper T cells in development and progression of liver diseases[J]. Journal of Clinical Hepatology, 2016, 32(6): 1230-1234. doi: 10.3969/j.issn.1001-5256.2016.06.050
    [10]Zhou Yan, Jing Xiang, Zhu ZhengYan. Roles of regulatory T cells and T-helper cells in hepatitis B virus-related liver diseases[J]. Journal of Clinical Hepatology, 2016, 32(10): 1994-1997. doi: 10.3969/j.issn.1001-5256.2016.10.040
    [11]Li CaiDong, Chen XiLian, Duan ZhengJun, Liu XueMei, Wu Bin. Determination of proportions of T cell subsets and levels of interleukin-15 and interleukin-16 in peripheral blood of patients with chronic hepatitis B virus infection and correlation between them[J]. Journal of Clinical Hepatology, 2015, 31(11): 1857-1861. doi: 10.3969/j.issn.1001-5256.2015.11.021
    [12]Shi GuangYing, Ma XiaoYuan, Xie JingDong. Changes in T lymphocyte subsets and cytokines in peripheral blood of patients with primary biliary cirrhosis after treatment with different doses of ursodeoxycholic acid[J]. Journal of Clinical Hepatology, 2015, 31(9): 1447-1451. doi: 10.3969/j.issn.1001-5256.2015.09.020
    [13]Li CaiDong, Chen XiLian, Tian PengFei, Li HuiJun, Wu Bin. Correlation analysis of percentages of T lymphocyte subsets and CD4~+CD25~+ regulatory T cells and HBV DNA level in peripheral blood of chronic hepatitis B patients[J]. Journal of Clinical Hepatology, 2015, 31(4): 541-545. doi: 10.3969/j.issn.1001-5256.2015.04.016
    [14]Wang Yu, Ma ZhiYuan, Guo YongHong, He Yu, Zhang Ying, Xie YuMei, Ma Li, Zhou Yun, Jia ZhanSheng. Investigation of CD4+CXCR5+ follicular helper T cell frequency and expression of related functional molecules in peripheral blood of hepatitis C virus patients[J]. Journal of Clinical Hepatology, 2013, 29(5): 379-382.
    [15]Ding QiaoYun, Yu HaiYing, Sun WeiWei, Pan Jian, Cao XingGuo, Wang Lei. The changes of peripheral blood T-lymphocyte subsets in pediatric severe hepatitis[J]. Journal of Clinical Hepatology, 2011, 27(7): 729-730.
  • Cited by

    Periodical cited type(8)

    1. 蒋丽莎,马洪升. 日归手术——中国日间手术的升华. 华西医学. 2022(02): 161-164 .
    2. 雷甜甜,梁鹏,马洪升,蒋丽莎. 四川大学华西医院日归手术管理实践. 广东医学. 2022(10): 1222-1228 .
    3. 方宁波,陈伟力. 腹腔镜胆囊切除术日间手术围术期指标观察及患者延迟出院原因分析. 江西医药. 2022(10): 1524-1527 .
    4. 刘力玮,郑亚民,刘东斌,王悦华,刘家峰,梁阔,江华,高崇崇,于志浩,徐大华. 日间腹腔镜胆囊切除术的可行性分析. 腹腔镜外科杂志. 2021(05): 359-362 .
    5. 杨奕夫,黎柏峰,肖艳. 日间腹腔镜胆囊切除术质量控制的研究进展. 腹腔镜外科杂志. 2020(10): 796-798+800 .
    6. 李航,赵礼金. 老年患者腹腔镜胆囊切除日间手术的安全性分析. 中国普通外科杂志. 2019(08): 1012-1017 .
    7. 石鑫,秦琦瑜,刘维丽,胥静,王威. “三镜”联合治疗胆囊结石合并肝外胆管结石手术效果及安全性研究. 临床军医杂志. 2018(06): 710-712 .
    8. 张少成,张亚辉,徐小梦. 年龄因素对上胆道疾病患者行腹腔镜胆囊切除术安全性的影响. 深圳中西医结合杂志. 2018(06): 184-186 .

    Other cited types(1)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 4.3 %FULLTEXT: 4.3 %META: 92.4 %META: 92.4 %PDF: 3.3 %PDF: 3.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.2 %其他: 6.2 %其他: 0.7 %其他: 0.7 %China: 0.2 %China: 0.2 %Fremont: 0.2 %Fremont: 0.2 %India: 0.2 %India: 0.2 %上海: 2.1 %上海: 2.1 %元朗新墟: 0.2 %元朗新墟: 0.2 %北京: 4.5 %北京: 4.5 %南京: 0.2 %南京: 0.2 %南宁: 0.2 %南宁: 0.2 %合肥: 0.2 %合肥: 0.2 %吉林: 0.7 %吉林: 0.7 %宿迁: 0.2 %宿迁: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 2.7 %张家口: 2.7 %拉斯维加斯: 0.2 %拉斯维加斯: 0.2 %昆明: 0.3 %昆明: 0.3 %杭州: 0.2 %杭州: 0.2 %武汉: 0.9 %武汉: 0.9 %泰州: 0.2 %泰州: 0.2 %济南: 0.2 %济南: 0.2 %深圳: 0.5 %深圳: 0.5 %温州: 0.2 %温州: 0.2 %罗奥尔凯埃: 0.5 %罗奥尔凯埃: 0.5 %美国伊利诺斯芝加哥: 0.2 %美国伊利诺斯芝加哥: 0.2 %芒廷维尤: 44.2 %芒廷维尤: 44.2 %芝加哥: 0.9 %芝加哥: 0.9 %莫斯科: 1.9 %莫斯科: 1.9 %蚌埠: 0.5 %蚌埠: 0.5 %西宁: 27.1 %西宁: 27.1 %西安: 0.3 %西安: 0.3 %诺沃克: 0.2 %诺沃克: 0.2 %越南承天顺化: 0.5 %越南承天顺化: 0.5 %郑州: 0.3 %郑州: 0.3 %重庆: 0.2 %重庆: 0.2 %长春: 0.5 %长春: 0.5 %长沙: 0.7 %长沙: 0.7 %阳江: 0.2 %阳江: 0.2 %青岛: 0.2 %青岛: 0.2 %香港: 0.7 %香港: 0.7 %其他其他ChinaFremontIndia上海元朗新墟北京南京南宁合肥吉林宿迁广州张家口拉斯维加斯昆明杭州武汉泰州济南深圳温州罗奥尔凯埃美国伊利诺斯芝加哥芒廷维尤芝加哥莫斯科蚌埠西宁西安诺沃克越南承天顺化郑州重庆长春长沙阳江青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1119) PDF downloads(269) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return