[1] |
MARRERO JA, KULIK LM, SIRLIN CB, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases[J]. Hepatology, 2018, 68(2): 723-750. DOI: 10.1002/hep.29913.
|
[2] |
KAMBADAKONE AR, FUNG A, GUPTA RT, et al. Correction to: LI-RADS technical requirements for CT, MRI, and contrast-enhanced ultrasound[J]. Abdom Radiol (NY), 2018, 43(1): 240. DOI: 10.1007/s00261-017-1345-7.
|
[3] |
JIANG H, LIU X, CHEN J, et al. Man or machine? Prospective comparison of the version 2018 EASL, LI-RADS criteria and a radiomics model to diagnose hepatocellular carcinoma[J]. Cancer Imaging, 2019, 19(1): 84. DOI: 10.1186/s40644-019-0266-9.
|
[4] |
HEIMBACH JK, KULIK LM, FINN RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma[J]. Hepatology, 2018, 67(1): 358-380. DOI: 10.1002/hep.29086.
|
[5] |
CUOCOLO R, CARUSO M, PERILLO T, et al. Machine learning in oncology: A clinical appraisal[J]. Cancer Lett, 2020, 481: 55-62. DOI: 10.1016/j.canlet.2020.03.032.
|
[6] |
HU W, YANG H, XU H, et al. Radiomics based on artificial intelligence in liver diseases: Where we are?[J]. Gastroenterol Rep(Oxf), 2020, 8(2): 90-97. DOI: 10.1093/gastro/goaa011.
|
[7] |
LANGLOTZ CP, ALLEN B, ERICKSON BJ, et al. A roadmap for foundational research on artificial intelligence in medical imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop[J]. Radiology, 2019, 291(3): 781-791. DOI: 10.1148/radiol.2019190613.
|
[8] |
SAVADJIEV P, CHONG J, DOHAN A, et al. Demystification of AI-driven medical image interpretation: Past, present and future[J]. Eur Radiol, 2019, 29(3): 1616-1624. DOI: 10.1007/s00330-018-5674-x.
|
[9] |
YAMADA A, OYAMA K, FUJITA S, et al. Dynamic contrast-enhanced computed tomography diagnosis of primary liver cancers using transfer learning of pretrained convolutional neural networks: Is registration of multiphasic images necessary?[J]. Int J Comput Assist Radiol Surg, 2019, 14(8): 1295-1301. DOI: 10.1007/s11548-019-01987-1.
|
[10] |
CHOY G, KHALILZADEH O, MICHALSKI M, et al. Current applications and future impact of machine learning in radiology[J]. Radiology, 2018, 288(2): 318-328. DOI: 10.1148/radiol.2018171820.
|
[11] |
CHARTRAND G, CHENG PM, VORONTSOV E, et al. Deep learning: A primer for radiologists[J]. Radiographics, 2017, 37(7): 2113-2131. DOI: 10.1148/rg.2017170077.
|
[12] |
FENG ST, JIA Y, LIAO B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: A radiomics model using Gd-EOB-DTPA-enhanced MRI[J]. Eur Radiol, 2019, 29(9): 4648-4659. DOI: 10.1007/s00330-018-5935-8.
|
[13] |
HARDING-THEOBALD E, LOUISSAINT J, MARAJ B, et al. Systematic review: Radiomics for the diagnosis and prognosis of hepatocellular carcinoma[J]. Aliment Pharmacol Ther, 2021, 54(7): 890-901. DOI: 10.1111/apt.16563.
|
[14] |
JIMÉNEZ PÉREZ M, GRANDE RG. Application of artificial intelligence in the diagnosis and treatment of hepatocellular carcinoma: A review[J]. World J Gastroenterol, 2020, 26(37): 5617-5628. DOI: 10.3748/wjg.v26.i37.5617.
|
[15] |
WAKABAYASHI T, OUHMICH F, GONZALEZ-CABRERA C, et al. Radiomics in hepatocellular carcinoma: A quantitative review[J]. Hepatol Int, 2019, 13(5): 546-559. DOI: 10.1007/s12072-019-09973-0.
|
[16] |
MA X, WEI J, GU D, et al. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT[J]. Eur Radiol, 2019, 29(7): 3595-3605. DOI: 10.1007/s00330-018-5985-y.
|
[17] |
HECTORS SJ, LEWIS S, BESA C, et al. MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma[J]. Eur Radiol, 2020, 30(7): 3759-3769. DOI: 10.1007/s00330-020-06675-2.
|
[18] |
WEI J, JIANG H, GU D, et al. Radiomics in liver diseases: Current progress and future opportunities[J]. Liver Int, 2020, 40(9): 2050-2063. DOI: 10.1111/liv.14555.
|
[19] |
LEWIS S, HECTORS S, TAOULI B. Radiomics of hepatocellular carcinoma[J]. Abdom Radiol (NY), 2021, 46(1): 111-123. DOI: 10.1007/s00261-019-02378-5.
|
[20] |
CUOCOLO R, COMELLI A, STEFANO A, et al. Deep learning whole- gland and zonal prostate segmentation on a public MRI dataset[J]. J Magn Reson Imaging, 2021, 54(2): 452-459. DOI: 10.1002/jmri.27585.
|
[21] |
NAYAK A, BAIDYA KAYAL E, ARYA M, et al. Computer-aided diagnosis of cirrhosis and hepatocellular carcinoma using multi-phase abdomen CT[J]. Int J Comput Assist Radiol Surg, 2019, 14(8): 1341-1352. DOI: 10.1007/s11548-019-01991-5.
|
[22] |
WARDHANA G, NAGHIBI H, SIRMACEK B, et al. Toward reliable automatic liver and tumor segmentation using convolutional neural network based on 2.5D models[J]. Int J Comput Assist Radiol Surg, 2021, 16(1): 41-51. DOI: 10.1007/s11548-020-02292-y.
|
[23] |
OUHMICH F, AGNUS V, NOBLET V, et al. Liver tissue segmentation in multiphase CT scans using cascaded convolutional neural networks[J]. Int J Comput Assist Radiol Surg, 2019, 14(8): 1275-1284. DOI: 10.1007/s11548-019-01989-z.
|
[24] |
BOUSABARAH K, LETZEN B, TEFERA J, et al. Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning[J]. Abdom Radiol (NY), 2021, 46(1): 216-225. DOI: 10.1007/s00261-020-02604-5.
|
[25] |
ZHEN SH, CHENG M, TAO YB, et al. Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data[J]. Front Oncol, 2020, 10: 680. DOI: 10.3389/fonc.2020.00680.
|
[26] |
JANSEN M, KUIJF HJ, VELDHUIS WB, et al. Automatic classification of focal liver lesions based on MRI and risk factors[J]. PLoS One, 2019, 14(5): e0217053. DOI: 10.1371/journal.pone.0217053.
|
[27] |
MOKRANE FZ, LU L, VAVASSEUR A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules[J]. Eur Radiol, 2020, 30(1): 558-570. DOI: 10.1007/s00330-019-06347-w.
|
[28] |
WANG M, FU F, ZHENG B, et al. Development of an AI system for accurately diagnose hepatocellular carcinoma from computed tomography imaging data[J]. Br J Cancer, 2021, 125(8): 1111-1121. DOI: 10.1038/s41416-021-01511-w.
|
[29] |
OESTMANN PM, WANG CJ, SAVIC LJ, et al. Deep learning-assisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma (HCC) versus non-HCC on contrast-enhanced MRI of the liver[J]. Eur Radiol, 2021, 31(7): 4981-4990. DOI: 10.1007/s00330-020-07559-1.
|
[30] |
VIVANTI R, JOSKOWICZ L, LEV-COHAIN N, et al. Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies[J]. Med Biol Eng Comput, 2018, 56(9): 1699-1713. DOI: 10.1007/s11517-018-1803-6.
|
[31] |
SHI W, KUANG S, CAO S, et al. Deep learning assisted differentiation of hepatocellular carcinoma from focal liver lesions: Choice of four-phase and three-phase CT imaging protocol[J]. Abdom Radiol (NY), 2020, 45(9): 2688-2697. DOI: 10.1007/s00261-020-02485-8.
|
[32] |
HAMM CA, WANG CJ, SAVIC LJ, et al. Deep learning for liver tumor diagnosis part I: Development of a convolutional neural network classifier for multi-phasic MRI[J]. Eur Radiol, 2019, 29(7): 3338-3347. DOI: 10.1007/s00330-019-06205-9.
|
[33] |
WU Y, WHITE GM, CORNELIUS T, et al. Deep learning LI-RADS grading system based on contrast enhanced multiphase MRI for differentiation between LR-3 and LR-4/LR-5 liver tumors[J]. Ann Transl Med, 2020, 8(11): 701. DOI: 10.21037/atm.2019.12.151.
|
[34] |
MAO B, ZHANG L, NING P, et al. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics[J]. Eur Radiol, 2020, 30(12): 6924-6932. DOI: 10.1007/s00330-020-07056-5.
|
[35] |
WU M, TAN H, GAO F, et al. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature[J]. Eur Radiol, 2019, 29(6): 2802-2811. DOI: 10.1007/s00330-018-5787-2.
|
[36] |
CHEN Y, XIA Y, TOLAT PP, et al. Comparison of conventional gadoxetate disodium-enhanced MRI features and radiomics signatures with machine learning for diagnosing microvascular invasion[J]. AJR Am J Roentgenol, 2021, 216(6): 1510-1520. DOI: 10.2214/AJR.20.23255.
|
[37] |
BORHANI AA, CATANIA R, VELICHKO YS, et al. Radiomics of hepatocellular carcinoma: Promising roles in patient selection, prediction, and assessment of treatment response[J]. Abdom Radiol (NY), 2021, 46(8): 3674-3685. DOI: 10.1007/s00261-021-03085-w.
|
[38] |
LAI Q, VITALE A, HALAZUN K, et al. Identification of an upper limit of tumor burden for downstaging in candidates with hepatocellular cancer waiting for liver transplantation: A west-east collaborative effort[J]. Cancers (Basel), 2020, 12(2): 452. DOI: 10.3390/cancers12020452.
|
[39] |
HUANG S, YANG J, FONG S, et al. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges[J]. Cancer Lett, 2020, 471: 61-71. DOI: 10.1016/j.canlet.2019.12.007.
|
[40] |
LAI Q, SPOLETINI G, MENNINI G, et al. Prognostic role of artificial intelligence among patients with hepatocellular cancer: A systematic review[J]. World J Gastroenterol, 2020, 26(42): 6679-6688. DOI: 10.3748/wjg.v26.i42.6679.
|
[41] |
GUO D, GU D, WANG H, et al. Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation[J]. Eur J Radiol, 2019, 117: 33-40. DOI: 10.1016/j.ejrad.2019.05.010.
|
[42] |
JI GW, ZHU FP, XU Q, et al. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study[J]. EBioMedicine, 2019, 50: 156-165. DOI: 10.1016/j.ebiom.2019.10.057.
|
[43] |
ZHANG Z, CHEN J, JIANG H, et al. Gadoxetic acid-enhanced MRI radiomics signature: Prediction of clinical outcome in hepatocellular carcinoma after surgical resection[J]. Ann Transl Med, 2020, 8(14): 870. DOI: 10.21037/atm-20-3041.
|
[44] |
YUAN C, WANG Z, GU D, et al. Prediction early recurrence of hepatocellular carcinoma eligible for curative ablation using a Radiomics nomogram[J]. Cancer Imaging, 2019, 19(1): 21. DOI: 10.1186/s40644-019-0207-7.
|
[45] |
SHEN JX, ZHOU Q, CHEN ZH, et al. Longitudinal radiomics algorithm of posttreatment computed tomography images for early detecting recurrence of hepatocellular carcinoma after resection or ablation[J]. Transl Oncol, 2021, 14(1): 100866. DOI: 10.1016/j.tranon.2020.100866.
|
[46] |
ABAJIAN A, MURALI N, SAVIC LJ, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning-an artificial intelligence concept[J]. J Vasc Interv Radiol, 2018, 29(6): 850-857. e1. DOI: 10.1016/j.jvir.2018.01.769.
|
[47] |
PENG J, KANG S, NING Z, et al. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging[J]. Eur Radiol, 2020, 30(1): 413-424. DOI: 10.1007/s00330-019-06318-1.
|
[48] |
ZHANG L, XIA W, YAN ZP, et al. Deep learning predicts overall survival of patients with unresectable hepatocellular carcinoma treated by transarterial chemoembolization plus sorafenib[J]. Front Oncol, 2020, 10: 593292. DOI: 10.3389/fonc.2020.593292.
|