[1] |
VARGAS J, HAMASAKI M, KAWABATA T, et al. The mechanisms and roles of selective autophagy in mammals[J]. Nat Rev Mol Cell Biol, 2023, 24( 3): 167- 185. DOI: 10.1038/s41580-022-00542-2.
|
[2] |
REN F, ZHANG L, ZHANG X, et al. Inhibition of glycogen synthase kinase 3β promotes autophagy to protect mice from acute liver failure mediated by peroxisome proliferator-activated receptor α[J]. Cell Death Dis, 2016, 7( 3): e2151. DOI: 10.1038/cddis.2016.56.
|
[3] |
XUE R, YANG J, JIA L, et al. Mitofusin2, as a protective target in the liver, controls the balance of apoptosis and autophagy in acute-on-chronic liver failure[J]. Front Pharmacol, 2019, 10: 601. DOI: 10.3389/fphar.2019.00601.
|
[4] |
WU Y, HE Y, WANG F, et al. Lipopolysaccharide inhibits autophagy and promotes inflammatory responses via p38 MAPK-induced proteasomal degradation of Atg13 in hepatic stellate cells[J]. Mediators Inflamm, 2022, 2022: 9603989. DOI: 10.1155/2022/9603989.
|
[5] |
TANG L, WANG X, ZHAO R, et al. Yi-Qi-Jian-Pi formula ameliorates immune function in acute-on-chronic liver failure by upregulating autophagy and mitochondrial biogenesis in CD8(+) T lymphocytes[J]. J Ethnopharmacol, 2023, 308: 116276. DOI: 10.1016/j.jep.2023.116276.
|
[6] |
STAVROPOULOS A, DIVOLIS G, MANIOUDAKI M, et al. Coordinated activation of TGF-β and BMP pathways promotes autophagy and limits liver injury after acetaminophen intoxication[J]. Sci Signal, 2022, 15( 740): eabn4395. DOI: 10.1126/scisignal.abn4395.
|
[7] |
NI HM, BOCKUS A, BOGGESS N, et al. Activation of autophagy protects against acetaminophen-induced hepatotoxicity[J]. Hepatology, 2012, 55( 1): 222- 232. DOI: 10.1002/hep.24690.
|
[8] |
HE YM, SHEN XL, GUO YN, et al. Yinhuang oral liquid protects acetaminophen-induced acute liver injury by regulating the activation of autophagy and Nrf2 signaling[J]. Ecotoxicol Environ Saf, 2022, 244: 114073. DOI: 10.1016/j.ecoenv.2022.114073.
|
[9] |
FAN Z, LI Y, CHEN S, et al. Magnesium isoglycyrrhizinate ameliorates concanavalin A-induced liver injury by inhibiting autophagy[J]. Front Pharmacol, 2022, 12: 794319. DOI: 10.3389/fphar.2021.794319.
|
[10] |
JIA Y, MA L, WANG Y, et al. NLRP3 inflammasome and related cytokines reflect the immune status of patients with HBV-ACLF[J]. Mol Immunol, 2020, 120: 179- 186. DOI: 10.1016/j.molimm.2020.01.011.
|
[11] |
HAN M, LI S, LI L. Verapamil inhibits early acute liver failure through suppressing the NLRP3 inflammasome pathway[J]. J Cell Mol Med, 2021, 25( 13): 5963- 5975. DOI: 10.1111/jcmm.16357.
|
[12] |
WANG Y, CHEN Q, JIAO F, et al. Histone deacetylase 2 regulates ULK1 mediated pyroptosis during acute liver failure by the K68 acetylation site[J]. Cell Death Dis, 2021, 12( 1): 55. DOI: 10.1038/s41419-020-03317-9.
|
[13] |
SHAN S, SHEN Z, ZHANG C, et al. Mitophagy protects against acetaminophen-induced acute liver injury in mice through inhibiting NLRP3 inflammasome activation[J]. Biochem Pharmacol, 2019, 169: 113643. DOI: 10.1016/j.bcp.2019.113643.
|
[14] |
HAN J, BAE J, CHOI CY, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice[J]. Autophagy, 2016, 12( 12): 2326- 2343. DOI: 10.1080/15548627.2016.1235124.
|
[15] |
BIASIZZO M, KOPITAR-JERALA N. Interplay between NLRP3 inflammasome and autophagy[J]. Front Immunol, 2020, 11: 591803. DOI: 10.3389/fimmu.2020.591803.
|
[16] |
WANG T, LU Z, QU XH, et al. Chrysophanol-8-O-glucoside protects mice against acute liver injury by inhibiting autophagy in hepatic stellate cells and inflammatory response in liver-resident macrophages[J]. Front Pharmacol, 2022, 13: 951521. DOI: 10.3389/fphar.2022.951521.
|
[17] |
VARıŞLı B, CAGLAYAN C, KANDEMIR FM, et al. Chrysin mitigates diclofenac-induced hepatotoxicity by modulating oxidative stress, apoptosis, autophagy and endoplasmic reticulum stress in rats[J]. Mol Biol Rep, 2023, 50( 1): 433- 442. DOI: 10.1007/s11033-022-07928-7.
|
[18] |
OAMI T, WATANABE E, HATANO M, et al. Blocking liver autophagy accelerates apoptosis and mitochondrial injury in hepatocytes and reduces time to mortality in a murine sepsis model[J]. Shock, 2018, 50( 4): 427- 434. DOI: 10.1097/SHK.0000000000001040.
|
[19] |
WANG H, NI HM, CHAO X, et al. Double deletion of PINK1 and Parkin impairs hepatic mitophagy and exacerbates acetaminophen-induced liver injury in mice[J]. Redox Biol, 2019, 22: 101148. DOI: 10.1016/j.redox.2019.101148.
|
[20] |
SHEN Z, WANG Y, SU Z, et al. Activation of p62-keap1-Nrf2 antioxidant pathway in the early stage of acetaminophen-induced acute liver injury in mice[J]. Chem Biol Interact, 2018, 282: 22- 28. DOI: 10.1016/j.cbi.2018.01.008.
|
[21] |
RUART M, CHAVARRIA L, CAMPRECIÓS G, et al. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury[J]. J Hepatol, 2019, 70( 3): 458- 469. DOI: 10.1016/j.jhep.2018.10.015.
|
[22] |
YANG J, LI J, GUO H, et al. An experimental study reveals the protective effect of autophagy against realgar-induced liver injury via suppressing ROS-mediated NLRP3 inflammasome pathway[J]. Int J Mol Sci, 2022, 23( 10): 5697. DOI: 10.3390/ijms23105697.
|
[23] |
WANG Q, JIA F, GUO C, et al. PINK1/Parkin-mediated mitophagy as a protective mechanism against AFB(1)-induced liver injury in mice[J]. Food Chem Toxicol, 2022, 164: 113043. DOI: 10.1016/j.fct.2022.113043.
|
[24] |
AHMEDY OA, SALEM HH, SAYED NH, et al. Naringenin affords protection against lipopolysaccharide/D-galactosamine-induced acute liver failure: Role of autophagy[J]. Arch Biochem Biophys, 2022, 717: 109121. DOI: 10.1016/j.abb.2022.109121.
|
[25] |
CHEN Q, WANG Y, JIAO FZ, et al. Histone deacetylase 6 inhibitor ACY1215 offers a protective effect through the autophagy pathway in acute liver failure[J]. Life Sci, 2019, 238: 116976. DOI: 10.1016/j.lfs.2019.116976.
|
[26] |
TIAN Z, CHEN Y, YAO N, et al. Role of mitophagy regulation by ROS in hepatic stellate cells during acute liver failure[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 315( 3): G374-G384. DOI: 10.1152/ajpgi.00032.2018.
|
[27] |
JIA Y, LI Y, WANG YJ. Research progress on exosome targeted delivery of nucleic acid molecules[J]. China Med Herald, 2023, 20( 3): 33- 36, 49. DOI: 10.20047/j.issn1673-7210.2023.03.07.
贾岳, 李妍, 王英骥. 外泌体靶向递送核酸类分子研究进展[J]. 中国医药导报, 2023, 20( 3): 33- 36, 49. DOI: 10.20047/j.issn1673-7210.2023.03.07.
|
[28] |
ZHENG J, WANG LR. Functions of exosomes on alcoholic liver disease[J/CD]. Chin J Liver Dis: Electronic Edition, 2022, 14( 2): 27- 31. DOI: 10.3969/j.issn.1674-7380.2022.02.004.
郑洁, 王丽蕊. 外泌体在酒精性肝病中的功能[J/CD]. 中国肝脏病杂志(电子版), 2022, 14( 2): 27- 31. DOI: 10.3969/j.issn.1674-7380.2022.02.004.
|
[29] |
COLLETTI M, CEGLIE D, DI GIANNATALE A, et al. Autophagy and exosomes relationship in cancer: friends or foes?[J]. Front Cell Dev Biol, 2021, 8: 614178. DOI: 10.3389/fcell.2020.614178.
|
[30] |
SHEN Y, MALIK SA, AMIR M, et al. Decreased hepatocyte autophagy leads to synergistic IL-1β and TNF mouse liver injury and inflammation[J]. Hepatology, 2020, 72( 2): 595- 608. DOI: 10.1002/hep.31209.
|
[31] |
JIAO Y, ZHANG Y, SHI HL, et al. A bioinformatics analysis of differentially expressed proteins in plasma exosome of acute-on-chronic liver failure patients with different prognoses[J]. J Clin Hepatol, 2021, 37( 4): 834- 840. DOI: 10.3969/j.issn.1001-5256.2021.04.022.
焦彦, 张莹, 时红林, 等. 慢加急性肝衰竭不同预后患者血浆外泌体差异蛋白的生物信息学分析[J]. 临床肝胆病杂志, 2021, 37( 4): 834- 840. DOI: 10.3969/j.issn.1001-5256.2021.04.022.
|
[32] |
GAO S, FAN YC, HAN LY, et al. Serum exosomal long noncoding RNA nuclear-enriched abundant transcript 1 predicts 90-day mortality in acute-on-chronic hepatitis B liver failure[J]. Expert Rev Clin Immunol, 2021, 17( 7): 789- 797. DOI: 10.1080/1744666X.2021.1933442.
|
[33] |
JIAO Y, LU W, XU P, et al. Hepatocyte-derived exosome may be as a biomarker of liver regeneration and prognostic valuation in patients with acute-on-chronic liver failure[J]. Hepatol Int, 2021, 15( 4): 957- 969. DOI: 10.1007/s12072-021-10217-3.
|
[34] |
YANG B, DUAN W, WEI L, et al. Bone marrow mesenchymal stem cell-derived hepatocyte-like cell exosomes reduce hepatic ischemia/reperfusion injury by enhancing autophagy[J]. Stem Cells Dev, 2020, 29( 6): 372- 379. DOI: 10.1089/scd.2019.0194.
|
[35] |
LIN D, CHEN H, XIONG J, et al. Mesenchymal stem cells exosomal let-7a-5p improve autophagic flux and alleviate liver injury in acute-on-chronic liver failure by promoting nuclear expression of TFEB[J]. Cell Death Dis, 2022, 13( 10): 865. DOI: 10.1038/s41419-022-05303-9.
|
[36] |
LIU YM, MA JH, ZENG QL, et al. MiR-19a affects hepatocyte autophagy via regulating lncRNA NBR2 and AMPK/PPARα in D-GalN/Lipopolysaccharide-stimulated hepatocytes[J]. J Cell Biochem, 2018, 119( 1): 358- 365. DOI: 10.1002/jcb.26188.
|
[37] |
JIANG N, ZHANG J, PING J, et al. Salvianolic acid B inhibits autophagy and activation of hepatic stellate cells induced by TGF-β1 by downregulating the MAPK pathway[J]. Front Pharmacol, 2022, 13: 938856. DOI: 10.3389/fphar.2022.938856.
|
[38] |
GUO E, LI R, YANG J, et al. FK866 attenuates acute hepatic failure through c-jun-N-terminal kinase(JNK)-dependent autophagy[J]. Sci Rep, 2017, 7( 1): 2206. DOI: 10.1038/s41598-017-02318-7.
|
[39] |
YANG Y, YING G, WU F, et al. sTim-3 alleviates liver injury via regulation of the immunity microenvironment and autophagy[J]. Cell Death Discov, 2020, 6: 62. DOI: 10.1038/s41420-020-00299-7.
|
[40] |
WANG Y, WANG JL, MA HC, et al. Mesenchymal stem cells increase heme oxygenase 1-activated autophagy in treatment of acute liver failure[J]. Biochem Biophys Res Commun, 2019, 508( 3): 682- 689. DOI: 10.1016/j.bbrc.2018.11.146.
|
1. | 朱成诚,丁世兰. 超声剪切波弹性成像对肝纤维化的临床应用进展. 现代医药卫生. 2022(22): 3874-3879+3883 . ![]() | |
2. | 肖毅,秦建伟. 肝硬化患者门静脉压力、脾静脉血流参数与SWE结果的特征分析. 甘肃科技. 2020(12): 101-104 . ![]() | |
3. | 董丙田,黄枢. 超声弹性成像在肝脏疾病的临床应用. 医学综述. 2019(05): 1002-1006 . ![]() | |
4. | 刘旭. 门静脉右支前间隙行磁共振改良测量对肝纤维化和肝硬化的诊断效果. 肝脏. 2019(05): 541-544 . ![]() | |
5. | 杨淑丽,诸绍锋,张蕾,石鹏,王姜莹,傅佳. 超声实时组织弹性成像定量分析对肝脏纤维化程度的诊断和鉴别诊断价值. 中国临床保健杂志. 2019(04): 526-529 . ![]() | |
6. | 林培艺. 无创性肝纤维化检测对肝硬化严重程度的评估作用. 慢性病学杂志. 2019(07): 1109-1110+1113 . ![]() | |
7. | 秦敏. 术前瞬时弹性超声检查对肝内结石肝切除术安全性的影响. 肝脏. 2019(08): 935-938 . ![]() | |
8. | 许琴,贡雪灏,郭国强. 实时剪切波弹性成像对慢性乙型肝炎患者早期肝纤维化的诊断价值. 临床和实验医学杂志. 2019(20): 2225-2227 . ![]() | |
9. | 孟艳,隆仙琴,李杰,丁文波. RTE与VTI对肝脏局灶良恶性病变的诊断. 中国临床研究. 2018(02): 255-258 . ![]() | |
10. | 杨皖东,肖春华,陈晓,普慧敏. 弹性成像技术对肝移植供体评估的研究进展. 中国当代医药. 2018(03): 18-20 . ![]() | |
11. | 徐列明. 中医药抗肝纤维化疗效评价的探索. 临床肝胆病杂志. 2017(05): 825-828 . ![]() | |
12. | 梁健,钟碧莹,汤茵,肖秀金,叶红. 肝纤维化检测在非酒精性脂肪肝诊断中的应用研究. 中国卫生标准管理. 2017(17): 110-113 . ![]() |