[1] |
KISSELEVA T, BRENNER D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 151-166. DOI: 10.1038/s41575-020-00372-7
|
[2] |
ALEGRE F, PELEGRIN P, FELDSTEIN AE. Inflammasomes in Liver Fibrosis[J]. Semin Liver Dis, 2017, 37(2): 119-127. DOI: 10.1055/s-0037-1601350
|
[3] |
IGNAT S R, DINESCU S, HERMENEAN A, et al. Cellular Interplay as a Consequence of Inflammatory Signals Leading to Liver Fibrosis Development[J]. Cells, 2020, 9(2): 461. DOI: 10.3390/cells9020461
|
[4] |
KOYAMA Y, BRENNER DA. Liver inflammation and fibrosis[J]. J Clin Invest, 2017, 127(1): 55-64. DOI: 10.1172/JCI88881
|
[5] |
SHOJAIE L, IORGA A, DARA L. Cell Death in Liver Diseases: A Review[J]. Int J Mol Sci, 2020, 21(24): 9682. DOI: 10.3390/ijms21249682
|
[6] |
TAKEHARA T, TATSUMI T, SUZUKI T, et al. Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyte apoptosis and liver fibrotic responses[J]. Gastroenterology, 2004, 127(4): 1189-1197. DOI: 10.1053/j.gastro.2004.07.019
|
[7] |
MIHM S. Danger-Associated Molecular Patterns (DAMPs): Molecular Triggers for Sterile Inflammation in the Liver[J]. Int J Mol Sci, 2018, 19(10): 3104. DOI: 10.3390/ijms19103104
|
[8] |
GONG T, LIU L, JIANG W, et al. DAMP-sensing receptors in sterile inflammation and inflammatory diseases[J]. Nat Rev Immunol, 2020, 20(2): 95-112. DOI: 10.1038/s41577-019-0215-7
|
[9] |
YANG H, WANG H, ANDERSSON U. Targeting Inflammation Driven by HMGB1[J]. Front Immunol, 2020, 11: 484. DOI: 10.3389/fimmu.2020.00484
|
[10] |
ANDERSSON U, YANG H, HARRIS H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases[J]. Expert Opin Ther Targets, 2018, 22(3): 263-277. DOI: 10.1080/14728222.2018.1439924
|
[11] |
HUEBENER P, PRADERE JP, HERNANDEZ C, et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis[J]. J Clin Invest, 2015, 125(2): 539-550. DOI: 10.1172/JCI76887
|
[12] |
KAO YH, JAWAN B, GOTO S, et al. High-mobility group box 1 protein activates hepatic stellate cells in vitro[J]. Transplant Proc, 2008, 40(8): 2704-2705. DOI: 10.1016/j.transproceed.2008.07.055
|
[13] |
CODDOU C, YAN Z, OBSIL T, et al. Activation and regulation of purinergic P2X receptor channels[J]. Pharmacol Rev, 2011, 63(3): 641-683. DOI: 10.1124/pr.110.003129
|
[14] |
ALLAM R, DARISIPUDI MN, TSCHOPP J, et al. Histones trigger sterile inflammation by activating the NLRP3 inflammasome[J]. Eur J Immunol, 2013, 43(12): 3336-3342. DOI: 10.1002/eji.201243224
|
[15] |
HE Y, LI S, TANG D, et al. Circulating Peroxiredoxin-1 is a novel damage-associated molecular pattern and aggravates acute liver injury via promoting inflammation[J]. Free Radic Biol Med, 2019, 137: 24-36. DOI: 10.1016/j.freeradbiomed.2019.04.012
|
[16] |
RIDDELL JR, WANG XY, MINDERMAN H, et al. Peroxiredoxin 1 stimulates secretion of proinflammatory cytokines by binding to TLR4[J]. J Immunol, 2010, 184(2): 1022-1030. DOI: 10.4049/jimmunol.0901945
|
[17] |
ZHAN SS, JIANG JX, WU J, et al. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo[J]. Hepatology, 2006, 43(3): 435-443. DOI: 10.1002/hep.21093
|
[18] |
ABAIS JM, XIA M, ZHANG Y, et al. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector?[J]. Antioxid Redox Signal, 2015, 22(13): 1111-1129. DOI: 10.1089/ars.2014.5994
|
[19] |
PAROLA M, PINZANI M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues[J]. Mol Aspects Med, 2019, 65: 37-55. DOI: 10.1016/j.mam.2018.09.002
|
[20] |
SEKI E, SCHWABE RF. Hepatic inflammation and fibrosis: functional links and key pathways[J]. Hepatology, 2015, 61(3): 1066-1079. DOI: 10.1002/hep.27332
|
[21] |
LI P, HE K, LI J, et al. The role of Kupffer cells in hepatic diseases[J]. Mol Immunol, 2017, 85: 222-229. DOI: 10.1016/j.molimm.2017.02.018
|
[22] |
SEKI E, TSUTSUI H, NAKANO H, et al. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1beta[J]. J Immunol, 2001, 166(4): 2651-2657. DOI: 10.4049/jimmunol.166.4.2651
|
[23] |
LI J, ZHAO YR, TIAN Z. Roles of hepatic stellate cells in acute liver failure: From the perspective of inflammation and fibrosis[J]. World J Hepatol, 2019, 11(5): 412-420. DOI: 10.4254/wjh.v11.i5.412
|
[24] |
KAMARI Y, SHAISH A, VAX E, et al. Lack of interleukin-1α or interleukin-1β inhibits transformation of steatosis to steatohepatitis and liver fibrosis in hypercholesterolemic mice[J]. J Hepatol, 2011, 55(5): 1086-1094. DOI: 10.1016/j.jhep.2011.01.048
|
[25] |
YAKUT M, ÖZKAN H, F KM, et al. Diagnostic and Prognostic Role of Serum Interleukin-6 in Malignant Transformation of Liver Cirrhosis[J]. Euroasian J Hepatogastroenterol, 2018, 8(1): 23-30. DOI: 10.5005/jp-journals-10018-1253
|
[26] |
MOSSER DM, EDWARDS JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12): 958-969. DOI: 10.1038/nri2448
|
[27] |
ZHANG F, WANG H, WANG X, et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype[J]. Oncotarget, 2016, 7(32): 52294-52306. DOI: 10.18632/oncotarget.10561
|
[28] |
ZIGMOND E, SAMIA-GRINBERG S, PASMANIK-CHOR M, et al. Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury[J]. J Immunol, 2014, 193(1): 344-353. DOI: 10.4049/jimmunol.1400574
|
[29] |
TSUCHIDA T, FRIEDMAN SL. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. DOI: 10.1038/nrgastro.2017.38
|
[30] |
AIMAITI Y, YUSUFUKADIER M, LI W, et al. TGF-β1 signaling activates hepatic stellate cells through Notch pathway[J]. Cytotechnology, 2019, 71(5): 881-891. DOI: 10.1007/s10616-019-00329-y
|
[31] |
FABREGAT I, MORENO-CÀCERES J, SÀNCHEZ A, et al. TGF-β signalling and liver disease[J]. FEBS J, 2016, 283(12): 2219-2232. DOI: 10.1111/febs.13665
|
[32] |
JEONG WI, PARK O, SUH YG, et al. Suppression of innate immunity (natural killer cell/interferon-γ) in the advanced stages of liver fibrosis in mice[J]. Hepatology, 2011, 53(4): 1342-1351. DOI: 10.1002/hep.24190
|
[33] |
PRADERE JP, KLUWE J, de MINICIS S, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice[J]. Hepatology, 2013, 58(4): 1461-1473. DOI: 10.1002/hep.26429
|
[34] |
PELLICORO A, RAMACHANDRAN P, IREDALE JP, et al. Liver fibrosis and repair: immune regulation of wound healing in a solid organ[J]. Nat Rev Immunol, 2014, 14(3): 181-194. DOI: 10.1038/nri3623
|
[35] |
BROZ P, DIXIT VM. Inflammasomes: mechanism of assembly, regulation and signalling[J]. Nat Rev Immunol, 2016, 16(7): 407-420. DOI: 10.1038/nri.2016.58
|
[36] |
BOARU SG, BORKHAM-KAMPHORST E, TIHAA L, et al. Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease[J]. J Inflamm (Lond), 2012, 9(1): 49. DOI: 10.1186/1476-9255-9-49
|
[37] |
WREE A, EGUCHI A, MCGEOUGH M D, et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice[J]. Hepatology, 2014, 59(3): 898-910. DOI: 10.1002/hep.26592
|
[38] |
WREE A, MCGEOUGH M D, PEÑA CA, et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD[J]. J Mol Med (Berl), 2014, 92(10): 1069-1082. DOI: 10.1007/s00109-014-1170-1
|
[39] |
CAI S M, YANG R Q, LI Y, et al. Angiotensin-(1-7) Improves Liver Fibrosis by Regulating the NLRP3 Inflammasome via Redox Balance Modulation[J]. Antioxid Redox Signal, 2016, 24(14): 795-812. DOI: 10.1089/ars.2015.6498
|
[40] |
MENG F, WANG K, AOYAMA T, et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice[J]. Gastroenterology, 2012, 143(3): 765-776. DOI: 10.1053/j.gastro.2012.05.049
|
[41] |
TAN Z, QIAN X, JIANG R, et al. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation[J]. J Immunol, 2013, 191(4): 1835-1844. DOI: 10.4049/jimmunol.1203013
|
[42] |
CHIU YS, WEI CC, LIN YJ, et al. IL-20 and IL-20R1 antibodies protect against liver fibrosis[J]. Hepatology, 2014, 60(3): 1003-1014. DOI: 10.1002/hep.27189
|
[43] |
MCHEDLIDZE T, WALDNER M, ZOPF S, et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis[J]. Immunity, 2013, 39(2): 357-371. DOI: 10.1016/j.immuni.2013.07.018
|
[44] |
LEIFER CA, MEDVEDEV AE. Molecular mechanisms of regulation of Toll-like receptor signaling[J]. J Leukoc Biol, 2016, 100(5): 927-941. DOI: 10.1189/jlb.2MR0316-117RR
|
[45] |
ZHANGDI HJ, SU SB, WANG F, et al. Crosstalk network among multiple inflammatory mediators in liver fibrosis[J]. World J Gastroenterol, 2019, 25(33): 4835-4849. DOI: 10.3748/wjg.v25.i33.4835
|
[46] |
RAMOS-TOVAR E, MURIEL P. Molecular Mechanisms That Link Oxidative Stress, Inflammation, and Fibrosis in the Liver[J]. Antioxidants (Basel), 2020, 9(12): 1279. DOI: 10.3390/antiox9121279
|
[47] |
LUEDDE T, SCHWABE RF. NF-κB in the liver--linking injury, fibrosis and hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2011, 8(2): 108-118. DOI: 10.1038/nrgastro.2010.213
|
[48] |
SEKI E, BRENNER DA, KARIN M. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches[J]. Gastroenterology, 2012, 143(2): 307-320. DOI: 10.1053/j.gastro.2012.06.004
|
[49] |
KLUWE J, PRADERE JP, GWAK GY, et al. Modulation of hepatic fibrosis by c-Jun-N-terminal kinase inhibition[J]. Gastroenterology, 2010, 138(1): 347-359. DOI: 10.1053/j.gastro.2009.09.015
|
[50] |
YOSHIDA K, MATSUZAKI K, MORI S, et al. Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury[J]. Am J Pathol, 2005, 166(4): 1029-1039. DOI: 10.1016/s0002-9440(10)62324-3.
|