中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 38 Issue 10
Oct.  2022
Turn off MathJax
Article Contents

Role of inflammation in hepatic fibrosis

DOI: 10.3969/j.issn.1001-5256.2022.10.032
Research funding:

Special Key Project of Chongqing Technology Innovation and Application Development (cstc2019jscx-dxwtBX0023);

Major and difficult diseases (liver fibrosis) Chinese and Western medicine clinical collaboration pilot project (Medical Administration Department, State Administration of Traditional Chinese Medicine [2018] No. 3);

Chongqing Talents · Innovation and Entrepreneurship Leading Talent Project (CQYC202003071);

Sponsored by Natural Science Foundation of Chongqing, China (cstc2020jcyj-msxmX0630);

Chongqing Medical Scientific Research Project (Joint project of Chongqing Health Commission and Science and Technology Bureau) (2019ZY3202)

More Information
  • Corresponding author: RAO Chunyan, chunyanrao@126.com(ORCID: 0000-0002-3586-9369)
  • Received Date: 2021-08-29
  • Accepted Date: 2021-10-18
  • Published Date: 2022-10-20
  • Inflammation caused by chronic liver is primarily responsible for the occurrence and pathological progression of liver fibrosis. In the process of liver fibrosis, a large number of activated inflammatory signals promote the transformation of hepatic stellate cells (HSC) into myofibroblasts (MF), which eventually leads to the massive secretion and deposition of extracellular matrix (ECM) and the formation of scar tissue in the liver. To provide literature references for clinical diagnosis and treatment, this paper reviews the roles of HSC, Kupffer cells (KC), inflammasomes and inflammatory signaling in liver fibrosis.

     

  • loading
  • [1]
    KISSELEVA T, BRENNER D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 151-166. DOI: 10.1038/s41575-020-00372-7
    [2]
    ALEGRE F, PELEGRIN P, FELDSTEIN AE. Inflammasomes in Liver Fibrosis[J]. Semin Liver Dis, 2017, 37(2): 119-127. DOI: 10.1055/s-0037-1601350
    [3]
    IGNAT S R, DINESCU S, HERMENEAN A, et al. Cellular Interplay as a Consequence of Inflammatory Signals Leading to Liver Fibrosis Development[J]. Cells, 2020, 9(2): 461. DOI: 10.3390/cells9020461
    [4]
    KOYAMA Y, BRENNER DA. Liver inflammation and fibrosis[J]. J Clin Invest, 2017, 127(1): 55-64. DOI: 10.1172/JCI88881
    [5]
    SHOJAIE L, IORGA A, DARA L. Cell Death in Liver Diseases: A Review[J]. Int J Mol Sci, 2020, 21(24): 9682. DOI: 10.3390/ijms21249682
    [6]
    TAKEHARA T, TATSUMI T, SUZUKI T, et al. Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyte apoptosis and liver fibrotic responses[J]. Gastroenterology, 2004, 127(4): 1189-1197. DOI: 10.1053/j.gastro.2004.07.019
    [7]
    MIHM S. Danger-Associated Molecular Patterns (DAMPs): Molecular Triggers for Sterile Inflammation in the Liver[J]. Int J Mol Sci, 2018, 19(10): 3104. DOI: 10.3390/ijms19103104
    [8]
    GONG T, LIU L, JIANG W, et al. DAMP-sensing receptors in sterile inflammation and inflammatory diseases[J]. Nat Rev Immunol, 2020, 20(2): 95-112. DOI: 10.1038/s41577-019-0215-7
    [9]
    YANG H, WANG H, ANDERSSON U. Targeting Inflammation Driven by HMGB1[J]. Front Immunol, 2020, 11: 484. DOI: 10.3389/fimmu.2020.00484
    [10]
    ANDERSSON U, YANG H, HARRIS H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases[J]. Expert Opin Ther Targets, 2018, 22(3): 263-277. DOI: 10.1080/14728222.2018.1439924
    [11]
    HUEBENER P, PRADERE JP, HERNANDEZ C, et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis[J]. J Clin Invest, 2015, 125(2): 539-550. DOI: 10.1172/JCI76887
    [12]
    KAO YH, JAWAN B, GOTO S, et al. High-mobility group box 1 protein activates hepatic stellate cells in vitro[J]. Transplant Proc, 2008, 40(8): 2704-2705. DOI: 10.1016/j.transproceed.2008.07.055
    [13]
    CODDOU C, YAN Z, OBSIL T, et al. Activation and regulation of purinergic P2X receptor channels[J]. Pharmacol Rev, 2011, 63(3): 641-683. DOI: 10.1124/pr.110.003129
    [14]
    ALLAM R, DARISIPUDI MN, TSCHOPP J, et al. Histones trigger sterile inflammation by activating the NLRP3 inflammasome[J]. Eur J Immunol, 2013, 43(12): 3336-3342. DOI: 10.1002/eji.201243224
    [15]
    HE Y, LI S, TANG D, et al. Circulating Peroxiredoxin-1 is a novel damage-associated molecular pattern and aggravates acute liver injury via promoting inflammation[J]. Free Radic Biol Med, 2019, 137: 24-36. DOI: 10.1016/j.freeradbiomed.2019.04.012
    [16]
    RIDDELL JR, WANG XY, MINDERMAN H, et al. Peroxiredoxin 1 stimulates secretion of proinflammatory cytokines by binding to TLR4[J]. J Immunol, 2010, 184(2): 1022-1030. DOI: 10.4049/jimmunol.0901945
    [17]
    ZHAN SS, JIANG JX, WU J, et al. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo[J]. Hepatology, 2006, 43(3): 435-443. DOI: 10.1002/hep.21093
    [18]
    ABAIS JM, XIA M, ZHANG Y, et al. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector?[J]. Antioxid Redox Signal, 2015, 22(13): 1111-1129. DOI: 10.1089/ars.2014.5994
    [19]
    PAROLA M, PINZANI M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues[J]. Mol Aspects Med, 2019, 65: 37-55. DOI: 10.1016/j.mam.2018.09.002
    [20]
    SEKI E, SCHWABE RF. Hepatic inflammation and fibrosis: functional links and key pathways[J]. Hepatology, 2015, 61(3): 1066-1079. DOI: 10.1002/hep.27332
    [21]
    LI P, HE K, LI J, et al. The role of Kupffer cells in hepatic diseases[J]. Mol Immunol, 2017, 85: 222-229. DOI: 10.1016/j.molimm.2017.02.018
    [22]
    SEKI E, TSUTSUI H, NAKANO H, et al. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1beta[J]. J Immunol, 2001, 166(4): 2651-2657. DOI: 10.4049/jimmunol.166.4.2651
    [23]
    LI J, ZHAO YR, TIAN Z. Roles of hepatic stellate cells in acute liver failure: From the perspective of inflammation and fibrosis[J]. World J Hepatol, 2019, 11(5): 412-420. DOI: 10.4254/wjh.v11.i5.412
    [24]
    KAMARI Y, SHAISH A, VAX E, et al. Lack of interleukin-1α or interleukin-1β inhibits transformation of steatosis to steatohepatitis and liver fibrosis in hypercholesterolemic mice[J]. J Hepatol, 2011, 55(5): 1086-1094. DOI: 10.1016/j.jhep.2011.01.048
    [25]
    YAKUT M, ÖZKAN H, F KM, et al. Diagnostic and Prognostic Role of Serum Interleukin-6 in Malignant Transformation of Liver Cirrhosis[J]. Euroasian J Hepatogastroenterol, 2018, 8(1): 23-30. DOI: 10.5005/jp-journals-10018-1253
    [26]
    MOSSER DM, EDWARDS JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12): 958-969. DOI: 10.1038/nri2448
    [27]
    ZHANG F, WANG H, WANG X, et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype[J]. Oncotarget, 2016, 7(32): 52294-52306. DOI: 10.18632/oncotarget.10561
    [28]
    ZIGMOND E, SAMIA-GRINBERG S, PASMANIK-CHOR M, et al. Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury[J]. J Immunol, 2014, 193(1): 344-353. DOI: 10.4049/jimmunol.1400574
    [29]
    TSUCHIDA T, FRIEDMAN SL. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. DOI: 10.1038/nrgastro.2017.38
    [30]
    AIMAITI Y, YUSUFUKADIER M, LI W, et al. TGF-β1 signaling activates hepatic stellate cells through Notch pathway[J]. Cytotechnology, 2019, 71(5): 881-891. DOI: 10.1007/s10616-019-00329-y
    [31]
    FABREGAT I, MORENO-CÀCERES J, SÀNCHEZ A, et al. TGF-β signalling and liver disease[J]. FEBS J, 2016, 283(12): 2219-2232. DOI: 10.1111/febs.13665
    [32]
    JEONG WI, PARK O, SUH YG, et al. Suppression of innate immunity (natural killer cell/interferon-γ) in the advanced stages of liver fibrosis in mice[J]. Hepatology, 2011, 53(4): 1342-1351. DOI: 10.1002/hep.24190
    [33]
    PRADERE JP, KLUWE J, de MINICIS S, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice[J]. Hepatology, 2013, 58(4): 1461-1473. DOI: 10.1002/hep.26429
    [34]
    PELLICORO A, RAMACHANDRAN P, IREDALE JP, et al. Liver fibrosis and repair: immune regulation of wound healing in a solid organ[J]. Nat Rev Immunol, 2014, 14(3): 181-194. DOI: 10.1038/nri3623
    [35]
    BROZ P, DIXIT VM. Inflammasomes: mechanism of assembly, regulation and signalling[J]. Nat Rev Immunol, 2016, 16(7): 407-420. DOI: 10.1038/nri.2016.58
    [36]
    BOARU SG, BORKHAM-KAMPHORST E, TIHAA L, et al. Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease[J]. J Inflamm (Lond), 2012, 9(1): 49. DOI: 10.1186/1476-9255-9-49
    [37]
    WREE A, EGUCHI A, MCGEOUGH M D, et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice[J]. Hepatology, 2014, 59(3): 898-910. DOI: 10.1002/hep.26592
    [38]
    WREE A, MCGEOUGH M D, PEÑA CA, et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD[J]. J Mol Med (Berl), 2014, 92(10): 1069-1082. DOI: 10.1007/s00109-014-1170-1
    [39]
    CAI S M, YANG R Q, LI Y, et al. Angiotensin-(1-7) Improves Liver Fibrosis by Regulating the NLRP3 Inflammasome via Redox Balance Modulation[J]. Antioxid Redox Signal, 2016, 24(14): 795-812. DOI: 10.1089/ars.2015.6498
    [40]
    MENG F, WANG K, AOYAMA T, et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice[J]. Gastroenterology, 2012, 143(3): 765-776. DOI: 10.1053/j.gastro.2012.05.049
    [41]
    TAN Z, QIAN X, JIANG R, et al. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation[J]. J Immunol, 2013, 191(4): 1835-1844. DOI: 10.4049/jimmunol.1203013
    [42]
    CHIU YS, WEI CC, LIN YJ, et al. IL-20 and IL-20R1 antibodies protect against liver fibrosis[J]. Hepatology, 2014, 60(3): 1003-1014. DOI: 10.1002/hep.27189
    [43]
    MCHEDLIDZE T, WALDNER M, ZOPF S, et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis[J]. Immunity, 2013, 39(2): 357-371. DOI: 10.1016/j.immuni.2013.07.018
    [44]
    LEIFER CA, MEDVEDEV AE. Molecular mechanisms of regulation of Toll-like receptor signaling[J]. J Leukoc Biol, 2016, 100(5): 927-941. DOI: 10.1189/jlb.2MR0316-117RR
    [45]
    ZHANGDI HJ, SU SB, WANG F, et al. Crosstalk network among multiple inflammatory mediators in liver fibrosis[J]. World J Gastroenterol, 2019, 25(33): 4835-4849. DOI: 10.3748/wjg.v25.i33.4835
    [46]
    RAMOS-TOVAR E, MURIEL P. Molecular Mechanisms That Link Oxidative Stress, Inflammation, and Fibrosis in the Liver[J]. Antioxidants (Basel), 2020, 9(12): 1279. DOI: 10.3390/antiox9121279
    [47]
    LUEDDE T, SCHWABE RF. NF-κB in the liver--linking injury, fibrosis and hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2011, 8(2): 108-118. DOI: 10.1038/nrgastro.2010.213
    [48]
    SEKI E, BRENNER DA, KARIN M. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches[J]. Gastroenterology, 2012, 143(2): 307-320. DOI: 10.1053/j.gastro.2012.06.004
    [49]
    KLUWE J, PRADERE JP, GWAK GY, et al. Modulation of hepatic fibrosis by c-Jun-N-terminal kinase inhibition[J]. Gastroenterology, 2010, 138(1): 347-359. DOI: 10.1053/j.gastro.2009.09.015
    [50]
    YOSHIDA K, MATSUZAKI K, MORI S, et al. Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury[J]. Am J Pathol, 2005, 166(4): 1029-1039. DOI: 10.1016/s0002-9440(10)62324-3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (1072) PDF downloads(236) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return