[1] |
YOUNOSSI Z, ANSTEE QM, MARIETTI M, et al. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15( 1): 11- 20. DOI: 10.1038/nrgastro.2017.109.
|
[2] |
ESLAM M, SANYAL AJ, GEORGE J, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158( 7): 1999- 2014. e 1. DOI: 10.1053/j.gastro.2019.11.312.
|
[3] |
DULAI PS, SINGH S, PATEL J, et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis[J]. Hepatology, 2017, 65( 5): 1557- 1565. DOI: 10.1002/hep.29085.
|
[4] |
KUCHAY MS, CHOUDHARY NS, MISHRA SK. Pathophysiological mechanisms underlying MAFLD[J]. Diabetes Metab Syndr, 2020, 14( 6): 1875- 1887. DOI: 10.1016/j.dsx.2020.09.026.
|
[5] |
ROMEO S, KOZLITINA J, XING C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease[J]. Nat Genet, 2008, 40( 12): 1461- 1465. DOI: 10.1038/ng.257.
|
[6] |
SOOKOIAN S, PIROLA CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene(PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease[J]. Hepatology, 2011, 53( 6): 1883- 1894. DOI: 10.1002/hep.24283.
|
[7] |
VALENTI L, AL-SERRI A, DALY AK, et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease[J]. Hepatology, 2010, 51( 4): 1209- 1217. DOI: 10.1002/hep.23622.
|
[8] |
LUUKKONEN PK, ZHOU Y, NIDHINA HARIDAS PA, et al. Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD[J]. J Hepatol, 2017, 67( 1): 128- 136. DOI: 10.1016/j.jhep.2017.02.014.
|
[9] |
PIROLA CJ, GARAYCOECHEA M, FLICHMAN D, et al. Splice variant rs72613567 prevents worst histologic outcomes in patients with nonalcoholic fatty liver disease[J]. J Lipid Res, 2019, 60( 1): 176- 185. DOI: 10.1194/jlr.P089953.
|
[10] |
SU W, PENG J, LI S, et al. Liver X receptor α induces 17β-hydroxysteroid dehydrogenase-13 expression through SREBP-1c[J]. Am J Physiol Endocrinol Metab, 2017, 312( 4): E357- E367. DOI: 10.1152/ajpendo.00310.2016.
|
[11] |
ABUL-HUSN NS, CHENG XP, LI AH, et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease[J]. N Engl J Med, 2018, 378( 12): 1096- 1106. DOI: 10.1056/NEJMoa1712191.
|
[12] |
LUUKKONEN PK, TUKIAINEN T, JUUTI A, et al. Hydroxysteroid 17-β dehydrogenase 13 variant increases phospholipids and protects against fibrosis in nonalcoholic fatty liver disease[J]. JCI Insight, 2020, 5( 5): e132158. DOI: 10.1172/jci.insight.132158.
|
[13] |
ROBERTSON G, LECLERCQ I, FARRELL GC. Nonalcoholic steatosis and steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress[J]. Am J Physiol Gastrointest Liver Physiol, 2001, 281( 5): G1135- G1139. DOI: 10.1152/ajpgi.2001.281.5.G1135.
|
[14] |
ROLO AP, TEODORO JS, PALMEIRA CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis[J]. Free Radic Biol Med, 2012, 52( 1): 59- 69. DOI: 10.1016/j.freeradbiomed.2011.10.003.
|
[15] |
YESILOVA Z, YAMAN H, OKTENLI C, et al. Systemic markers of lipid peroxidation and antioxidants in patients with nonalcoholic Fatty liver disease[J]. Am J Gastroenterol, 2005, 100( 4): 850- 855. DOI: 10.1111/j.1572-0241.2005.41500.x.
|
[16] |
PARADIES G, PARADIES V, RUGGIERO FM, et al. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2014, 20( 39): 14205- 14218. DOI: 10.3748/wjg.v20.i39.14205.
|
[17] |
ZHOU ZK, WANG YY, JIANG YM, et al. Deep-fried oil consumption in rats impairs glycerolipid metabolism, gut histology and microbiota structure[J]. Lipds Health Dis, 2016, 15( 1): 86. DOI: 10.1186/s12944-016-0252-1.
|
[18] |
XUE LJ, HAN JQ, ZHOU YC, et al. Untargeted metabolomics characteristics of nonobese nonalcoholic fatty liver disease induced by high-temperature-processed feed in Sprague-Dawley rats[J]. World J Gastroenterol, 2020, 26( 46): 7299- 7311. DOI: 10.3748/wjg.v26.i46.7299.
|
[19] |
RINALDO-MATTHIS A, HAEGGSTRÖM JZ. Structures and mechanisms of enzymes in the leukotriene cascade[J]. Biochimie, 2010, 92( 6): 676- 681. DOI: 10.1016/j.biochi.2010.01.010.
|
[20] |
ZHANG NP, LIU XJ, XIE L, et al. Impaired mitophagy triggers NLRP3 inflammasome activation during the progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis[J]. Lab Invest, 2019, 99( 6): 749- 763. DOI: 10.1038/s41374-018-0177-6.
|
[21] |
BARBIER-TORRES L, FORTNER KA, IRUZUBIETA P, et al. Silencing hepatic MCJ attenuates non-alcoholic fatty liver disease(NAFLD) by increasing mitochondrial fatty acid oxidation[J]. Nat Commun, 2020, 11( 1): 3360. DOI: 10.1038/s41467-020-16991-2.
|
[22] |
LI CG, HSIEH MC, CHANG SJ. Metabolic syndrome, diabetes, and hyperuricemia[J]. Curr Opin Rheumatol, 2013, 25( 2): 210- 216. DOI: 10.1097/BOR.0b013e32835d951e.
|
[23] |
FORLANI G, GIORDA C, MANTI R, et al. The burden of NAFLD and its characteristics in a nationwide population with type 2 diabetes[J]. J Diabetes Res, 2016, 2016: 2931985. DOI: 10.1155/2016/2931985.
|
[24] |
SHEN Q, TAN X, WANG WZ. Autonomic nervous dysfunction caused by circadian disruption: research progress[J]. Acad J Naval Med Uni, 2024, 45( 3): 328- 332. DOI: 10.16781/j.CN31-2187/R.20230605.
沈琦, 谭兴, 王伟忠. 昼夜节律紊乱导致自主神经功能失衡的研究进展[J]. 海军军医大学学报, 2024, 45( 3): 328- 332. DOI: 10.16781/j.CN31-2187/R.20230605.
|
[25] |
ZHENG XY, GONG LL, LUO R, et al. Serum uric acid and non-alcoholic fatty liver disease in non-obesity Chinese adults[J]. Lipds Health Dis, 2017, 16( 1): 202. DOI: 10.1186/s12944-017-0531-5.
|
[26] |
LIU J, WANG C, WANG YT, et al. Hyperuricemia as an independent risk factor for metabolic dysfunction-associated fatty liver disease in nonobese patients without type 2 diabetes mellitus[J]. Am J Physiol Endocrinol Metab, 2023, 325( 1): E62- E71. DOI: 10.1152/ajpendo.00001.2023.
|
[27] |
JENSEN T, NIWA K, HISATOME I, et al. Increased serum uric acid over five years is a risk factor for developing fatty liver[J]. Sci Rep, 2018, 8( 1): 11735. DOI: 10.1038/s41598-018-30267-2.
|
[28] |
ZHOU YJ, WEI FF, FAN Y. High serum uric acid and risk of nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Clin Biochem, 2016, 49( 7-8): 636- 642. DOI: 10.1016/j.clinbiochem.2015.12.010.
|
[29] |
SPAHIS S, DELVIN E, BORYS JM, et al. Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis[J]. Antioxid Redox Signal, 2017, 26( 10): 519- 541. DOI: 10.1089/ars.2016.6776.
|
[30] |
LIU N, XU H, SUN QQ, et al. The role of oxidative stress in hyperuricemia and xanthine oxidoreductase(XOR) inhibitors[J]. Oxid Med Cell Longev, 2021, 2021: 1470380. DOI: 10.1155/2021/1470380.
|
[31] |
VANDANMAGSAR B, YOUM YH, RAVUSSIN A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance[J]. Nat Med, 2011, 17( 2): 179- 188. DOI: 10.1038/nm.2279.
|
[32] |
CHOE EK, KANG HY, PARK B, et al. The association between nonalcoholic fatty liver disease and CT-measured skeletal muscle mass[J]. J Clin Med, 2018, 7( 10): 310. DOI: 10.3390/jcm7100310.
|
[33] |
UTZSCHNEIDER KM, KAHN SE. Review: The role of insulin resistance in nonalcoholic fatty liver disease[J]. J Clin Endocrinol Metab, 2006, 91( 12): 4753- 4761. DOI: 10.1210/jc.2006-0587.
|
[34] |
ZHAI Y, XIAO Q. The common mechanisms of sarcopenia and NAFLD[J]. Biomed Res Int, 2017, 2017: 6297651. DOI: 10.1155/2017/6297651.
|
[35] |
NEWGARD CB, AN J, BAIN JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance[J]. Cell Metab, 2009, 9( 4): 311- 326. DOI: 10.1016/j.cmet.2009.02.002.
|
[36] |
WANG TJ, LARSON MG, VASAN RS, et al. Metabolite profiles and the risk of developing diabetes[J]. Nat Med, 2011, 17( 4): 448- 453. DOI: 10.1038/nm.2307.
|
[37] |
GOFFREDO M, SANTORO N, TRICÒ D, et al. A branched-chain amino acid-related metabolic signature characterizes obese adolescents with non-alcoholic fatty liver disease[J]. Nutrients, 2017, 9( 7): 642. DOI: 10.3390/nu9070642.
|
[38] |
MASARONE M, TROISI J, AGLITTI A, et al. Untargeted metabolomics as a diagnostic tool in NAFLD: Discrimination of steatosis, steatohepatitis and cirrhosis[J]. Metabolomics, 2021, 17( 2): 12. DOI: 10.1007/s11306-020-01756-1.
|
[39] |
KOLODZIEJCZYK AA, ZHENG DP, SHIBOLET O, et al. The role of the microbiome in NAFLD and NASH[J]. EMBO Mol Med, 2019, 11( 2): e9302. DOI: 10.15252/emmm.201809302.
|
[40] |
DEN BESTEN G, LANGE K, HAVINGA R, et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305( 12): G900- G910. DOI: 10.1152/ajpgi.00265.2013.
|
[41] |
SUN MM, WU W, LIU ZJ, et al. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases[J]. J Gastroenterol, 2017, 52( 1): 1- 8. DOI: 10.1007/s00535-016-1242-9.
|
[42] |
KIM M, LEE HA, CHO HM, et al. Histone deacetylase inhibition attenuates hepatic steatosis in rats with experimental Cushing’s syndrome[J]. Korean J Physiol Pharmacol, 2018, 22( 1): 23- 33. DOI: 10.4196/kjpp.2018.22.1.23.
|
[43] |
CHEN YM, LIU Y, ZHOU RF, et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults[J]. Sci Rep, 2016, 6: 19076. DOI: 10.1038/srep19076.
|
[44] |
KOETH RA, WANG ZN, LEVISON BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19( 5): 576- 585. DOI: 10.1038/nm.3145.
|
[45] |
ZHANG H, SUN H, LIAO H. Mechanism of inducing microglial inflammatory response in patients with depression[J]. Basic Clin Med, 2024, 44( 7): 1029- 1033. DOI: 10.16352/j.issn.1001-6325.2024.07.1029.
张昊, 孙浩, 廖红. 诱导抑郁症患者小胶质细胞炎性反应的机制[J]. 基础医学与临床, 2024, 44( 7): 1029- 1033. DOI: 10.16352/j.issn.1001-6325.2024.07.1029.
|
[46] |
WEI Y, CHANG LJ, HASHIMOTO K. Molecular mechanisms underlying the antidepressant actions of arketamine: Beyond the NMDA receptor[J]. Mol Psychiatry, 2022, 27: 559- 573. DOI: 10.1038/s41380-021-01121-1.
|
[47] |
TILG H, ADOLPH TE, TRAUNER M. Gut-liver axis: Pathophysiological concepts and clinical implications[J]. Cell Metab, 2022, 34( 11): 1700- 1718. DOI: 10.1016/j.cmet.2022.09.017.
|
[48] |
ZHU LX, BAKER SS, GILL C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis(NASH) patients: A connection between endogenous alcohol and NASH[J]. Hepatology, 2013, 57( 2): 601- 609. DOI: 10.1002/hep.26093.
|
[49] |
VOLYNETS V, KÜPER MA, STRAHL S, et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease(NAFLD)[J]. Dig Dis Sci, 2012, 57( 7): 1932- 1941. DOI: 10.1007/s10620-012-2112-9.
|
[50] |
YUAN J, CHEN C, CUI JH, et al. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae[J]. Cell Metab, 2019, 30( 4): 675- 688. e 7. DOI: 10.1016/j.cmet.2019.08.018.
|
[51] |
KAKIYAMA G, PANDAK WM, GILLEVET PM, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis[J]. J Hepatol, 2013, 58( 5): 949- 955. DOI: 10.1016/j.jhep.2013.01.003.
|
[52] |
CHÁVEZ-TALAVERA O, TAILLEUX A, LEFEBVRE P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152( 7): 1679- 1694. e 3. DOI: 10.1053/j.gastro.2017.01.055.
|
[53] |
RIDLON JM, KANG DJ, HYLEMON PB, et al. Bile acids and the gut microbiome[J]. Curr Opin Gastroenterol, 2014, 30( 3): 332- 338. DOI: 10.1097/MOG.0000000000000057.
|
[54] |
SPENCER MD, HAMP TJ, REID RW, et al. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency[J]. Gastroenterology, 2011, 140( 3): 976- 986. DOI: 10.1053/j.gastro.2010.11.049.
|
[55] |
ARON-WISNEWSKY J, CLÉMENT K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders[J]. Nat Rev Nephrol, 2016, 12( 3): 169- 181. DOI: 10.1038/nrneph.2015.191.
|
[56] |
TANG WH, WANG ZN, LEVISON BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk[J]. N Engl J Med, 2013, 368( 17): 1575- 1584. DOI: 10.1056/NEJMoa1109400.
|