中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Influence of monoacylglycerol lipase on growth of nude mice xenograft tumor of human hepatocellular carcinoma and related mechanism

DOI: 10.3969/j.issn.1001-5256.2019.07.021
Research funding:

 

  • Received Date: 2019-03-11
  • Published Date: 2019-07-20
  • Objective To investigate the role and mechanism of action of monoacylglycerol lipase ( MAGL) on the growth of nude mice xenograft tumor of human hepatocellular carcinoma ( HCC) . Methods The transplanted SMMC-7721 cells were divided into SMMC-7721 WT group ( without treatment) , SMMC-7721 MAGL-KDgroup ( with MAGL silencing) , SMMC-7721 MAGL-OEgroup ( with MAGL overexpression) , and SMMC-7721 Vectorgroup ( transfected with empty vector) . A total of 27 male BALB/c nude mice were randomly divided into group A ( 12 mice injected with the cells in the SMMC-7721 WTgroup) , group B ( 5 mice injected with the cells in the SMMC-7721 MAGL-KD group) , group C ( 5 mice injected with the cells in the SMMC-7721 MAGL-OEgroup) , and group D ( 5 mice injected with the cells in the SMMC-7721 Vectorgroup) . The mice in group A were further divided into groups A1 ( control group) , A2 ( treated with high-fat diet and JZL184, a specific inhibitor of MAGL) , and A3 ( fed with high-fat diet) , with 4 mice in each group. The four groups were compared in terms of the change in tumor volume and the expression of proliferating cell nuclear antigen ( PCNA) , metal matrix proteinase-2 ( MMP-2) , lysophosphatidic acid ( LPA) , and prostaglandin E2 ( PGE2) in tumor. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the SNK-q test was used for further comparison between two groups. Results There was a significant difference in the relative protein expression of MAGL between the SMMC-7721 WTgroup, the SMMC-7721 MAGL-KDgroup, and the SMMC-7721 MAGL-OEgroup ( 0. 377 ± 0. 026 vs 0. 182 ± 0. 055 vs 0. 689 ± 0. 019, F = 33. 382, P < 0. 001) ; compared with the SMMC-7721 WTgroup, the SMMC-7721 MAGL-KDgroup had significantly lower protein expression of MAGL and the SMMC-7721 MAGL-OEgroup had significantly higher expression ( P < 0. 05) . There was a significant difference in the size of subcutaneous xenograft tumor between groups A, B, C, and D ( 4236. 125 ± 1284. 283 mm3 vs 1883. 375 ± 552. 977 mm3 vs 10 146. 061 ± 1842. 264 mm3 vs 4307. 452 ± 2070. 708 mm3, F= 6. 804, P = 0. 023) . Group C had a lower growth rate of subcutaneous xenograft tumor than group A ( P < 0. 05) , and group B had a higher growth rate than group A ( P < 0. 05) . There were significant differences between groups A, B, and C in the levels of PCNA ( 25 843.821 ± 4201. 310 vs 17 426. 95 ± 5139. 202 vs 39 753. 103 ± 5721. 444, F = 21. 482, P < 0. 001) and MMP-2 ( 52 841. 621 ± 4339. 253 vs35 511. 451 ± 8251. 423 vs 68 274. 731 ± 6418. 594, F = 11. 526, P < 0. 001) ; group B had significantly lower levels of PCNA and MMP-2 than group A ( P < 0. 05) , and group C had significantly higher levels than group A ( P < 0. 05) . There was a significant difference in tumor volume between groups A1, A2, and A3 ( 23 476. 289 ± 483. 872 mm3 vs 18 593. 851 ± 1385. 805 mm3 vs 37 703. 198 ± 2925. 254 mm3, F = 47. 371, P = 0. 004) . Compared with group A1, group A3 had a significantly higher growth rate of subcutaneous xenograft tumor ( P < 0. 05) and group A2 had a significantly lower growth rate ( P < 0. 05) . There was a significant difference in the level of PGE2 between groups A1, A2, and A3 ( 0. 109 ± 0. 023 μmol/L vs 0. 056 ± 0. 010 μmol/L vs 0. 168 ± 0. 024 μmol/L, F = 16. 492, P < 0. 001) ; group A3 had a significantly higher level of PGE2 than group A1 ( P < 0. 05) , and group A2 had a significantly lower level than group A1 ( P < 0.05) . There was a significant difference in the level of PGE2 between groups B, C, and D ( 0. 069 ± 0. 025 μmol/L vs 0. 175 ± 0. 023 μmol/L vs 0. 096 ± 0. 019 μmol/L, F = 31. 550, P < 0. 001) ; group B had a significantly lower level of PGE2 than group D ( P < 0. 05) , and group C had a significantly higher level than group D ( P < 0. 05) . Conclusion MAGL can promote the growth of subcutaneous xenograft tumor of HCC by regulating PGE2, suggesting that MAGL might become a potential target for HCC treatment in future.

     

  • [1]BRAY F, FERLAY J, JEMAL A, et al.Global cancer statistics2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin, 2018, 68 (6) :394-424.
    [2]CHEN W, ZHENG R, BAADE PD, et al.Cancer statistics in China, 2015[J].CA Cancer J Clin, 2016, 66 (2) :115-32.
    [3]ZHANG C, WANG J.Experience in treating hepatocellular carcinoma by classical pescription[J].J Changchun Univ Chin Med, 2018, 34 (5) :908-910. (in Chinese) 张驰, 王军.原发性肝细胞癌经方论治管见[J].长春中医药大学学报, 2018, 34 (5) :908-910.
    [4]XU M, ZHENG XM, QIU WQ, et al.MicroRNA-190b regulates lipid metabolism and insulin sensitivity by targeting IGF-1 and ADAMTS9 in non-alcoholic fatty liver disease[J].J Cel Biochem, 2018, 119 (7) :5864-5874.
    [5] TORNQVIST H, BELFRAGE P.Purification and some properties of a monoacylglycerol hydrolyzing enzyme of rat adipose tissue[J].Biol Chem, 1976, 251 (3) :813-819.
    [6]GUZMAN M.A new age for MAGL[J].Chem Biol, 2010, 17 (1) :4-6.
    [7]NOMURA DK, LONG JZ, CRAVATT BF, et al.Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis[J].Cell, 2010, 140 (1) :49-61.
    [8] CIPRIANO M, GOUVEIA-FIGUEIRA S, FOWLER CJ, et al.The influence of monoacylglycerol lipase inhibition upon the expression of epidermal growth factor receptor in human PC-3 prostate cancer cells[J].BMC Res Notes, 2014, (7) :441.
    [9]QIN H, RUAN ZH.The role of monoacylglycerol lipase (MAGL) in the cancer progress[J].Cell Biochem Biophys, 2014, 70 (1) :33-36.
    [10]CHEN XF, ZHANG JY, XU ZP, et al.LPSS-NH2-medicated transfection of) monoacylglycerol) lipase) shRNA) down-regulates prostaglandin) E2) and) inhibits proliferation and) invasion in hepatocellular cell lines[J].J Third Milit Med Univ, 2018, 40 (19) :1762-1769. (in Chinese) 陈先锋, 张俊勇, 龚建平, 等.硅酸盐介孔材料介导的MAGL-shRNA转染下调前列腺素E2抑制肝细胞癌细胞株增殖与侵袭[J].第三军医大学学报, 2018, 40 (19) :1762-1769.
    [11]NIU D, ZHANG J, GONG J.et al.Monodispersed and ordered large-pore mesoporous silica nanospheres with tunable pore structure for magnetic functionalization and gene delivery[J].Adv Mater, 2014, 26 (29) :4947-4953.
    [12] JAUREGUIBERRY MS, TRICERRI M, RIMOLDI OJ, et al.Role of plasma membrane lipid composition on cellular homeostasis:Learning from cell line models expressing fatty acid desaturases[J].Acta Biochim Biophys Sin (Shanghai) , 2014, 46 (4) :273-282.
    [13] ZHANG J, GONG JP, QIAO ZR, et al.The combined antitumor effects of 125I radioactive particle implantation and cytokine-induced killer cell therapy on xenograft hepatocellular carcinoma in a mouse model[J].Technol Cancer Res Treat, 2017, 16 (6) :1083-1091.
    [14] ZHANG J, LIU ZJ, GONG JP, et al.Monoacylglycerol lipase:A novel potential therapeutic target and prognostic indicator for hepatocellular carcinoma[J].Sci Rep, 2016, 6:35784.
    [15] SUN H, JIANG L, HUANG Y, et al.Potential tumor-suppressive role of monoglyceride lipase in human colorectal cancer[J].Oncogene, 2013, 32 (2) :234-241.
    [16]PAGANO E, BORRELLI F, ORLANDO P, et al.Pharmacological inhibition of MAGL attenuates experimental colon carcinogenesis[J].Pharmacol Res, 2017, (119) :227-236.
    [17]TANG ED, WANG CY.YAP-mediated induction of monoacylglycerol lipase restrains oncogenic transformation[J].Cell Signal, 2015, 27 (4) :836-840.
    [18] LLOYD PG.Caveolin-1, antiapoptosis signaling, and anchorage-independent cell growth.Focus on"Caveolin-1regulates Mcl-1 stability and anoikis in lung carcinoma cells"[J].Am J Physiol Cell Physiol, 2012, 302 (9) :c1282-c1283.
    [19] ZHU W, ZHAO Y, WANG L, et al.Monoacylglycerol lipase promotes progression of hepatocellular carcinoma via NF-κB-mediated epithelial-mesenchymal transition[J].J Hematol Oncol, 2016, 9 (1) :127.
    [20] REN J, XIAO YJ, XU Y, et al.Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells[J].Cancer Res, 2006, 66 (6) :3006-3014.
    [21]MAZZOCCA A, ANTONACI S, GIANNELLI G.Tumor-secreted lysophostatidic acid accelerates hepatocellular carcinoma progression by promoting differentiation of peritumoral fibroblasts in myofibroblasts[J].Hepatology, 2011, 54 (3) :920-930.
    [22]ZHANG H, BAI X, LENG J, et al.Prostaglandin E2 promotes hepatocellular carcinoma cell invasion through upregulation of YB-1 protein expression[J].Int J Oncol, 2014, 44 (3) :769-780.
    [23]NOMURA D, CAROLYN H, ANNA W, et al.Monoacylglycerol lipase regulates 2-arachidonoylglycerol action and arachidonic acid levels[J].Bioorg Med Chem Lett, 2008, 18 (22) :5875-5878.
    [24] MACCARRONE M, DI RIENZO M, FINAZZI-AGRA, et al.Binding, degradation and apoptotic activity of stearoylethanolamide in rat C6 glioma cells[J].Biochem J, 2002, 366 (Pt1) :137-144.
    [25] HU WR, LIAN YF, ZENG YX, et al.Monoacylglycerol lipase promotes metastases in nasopharyngeal carcinoma[J].Int JClin Exp Pathol, 2014, 7 (7) :3704-3713.
    [26]CHAI C, RIVKIN M, GALUN E, et al.Metabolic circuit involving free fatty acids, microrna 122, and triglyceride synthesis in liver and muscle tissues[J].Gastroenterology, 2017, 153 (5) :1404-1415.
    [27] PACELLA I, BARNABA V, PICONESE S, et al.Fatty acid metabolism complements glycolysis in the selective regulatory Tcell expansion during tumor growth[J].Proc Natl Acad Sci US A, 2018, 115 (28) :e6546-e6555.
    [28] JAUREGUIBERRY MS, TRICERRI M, RIMOLDI OJ, et al.Role of plasma membrane lipid composition on cellular homeostasis:learning from cell line models expressing fatty acid desaturases[J].Acta Biochim Biophys Sin (Shanghai) , 2014, 46 (4) :273-282.
    [29] MAZZOCCA A, ANTONACI S, GIANNELLI G.Tumor-secreted lysophostatidic acid accelerates hepatocellular carcinoma progression by promoting differentiation of peritumoral fibroblasts in myofibroblasts[J].Hepatology, 2011, 54 (3) :920-930.
    [30] ZHANG H, BAI X, LENG J, et al.Prostaglandin E2 promotes hepatocellular carcinoma cell invasion through upregulation of YB-1 protein expression[J].Int J Oncol, 2014, 44 (3) :769-780.
  • Relative Articles

    [1]Haiyang ZHU, Jingshu CUI, Liu YANG, Mengting ZHOU, Jian TONG, Hongmei HAN. Mechanism of 1,25(OH)2D3 improving liver inflammation in a rat model of nonalcoholic steatohepatitis induced by choline-deficient L-amino acid-defined diet[J]. Journal of Clinical Hepatology, 2025, 41(2): 254-262. doi: 10.12449/JCH250210
    [2]Yunchong WU, Yanyan YANG, Chuan LI, Xiaohuan WU, Shide LIN. Role of inflammatory cytokines in disorder of glucose metabolism in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2024, 40(9): 1886-1890. doi: 10.12449/JCH240926
    [3]Zhan ZENG, Yuanjiao GAO, Xiaoyue BI, Fengxin CHEN, Wen DENG, Tingting JIANG, Yanjie LIN, Liu YANG, Minghui LI, Yao XIE. Value of HBsAg level in predicting liver inflammation in patients with HBeAg-positive chronic hepatitis B virus infection and normal alanine aminotransferase[J]. Journal of Clinical Hepatology, 2022, 38(5): 1030-1034. doi: 10.3969/j.issn.1001-5256.2022.05.011
    [4]Huaqian XU, Xue LI, Shanhong TANG. Research advances in the role of inflammatory response and related treatment strategies in acute-on-chronic liver failure[J]. Journal of Clinical Hepatology, 2022, 38(8): 1927-1930. doi: 10.3969/j.issn.1001-5256.2022.08.041
    [5]Ting LI, Huabao LIU, Wenyan HU, Chunyan RAO. Role of inflammation in hepatic fibrosis[J]. Journal of Clinical Hepatology, 2022, 38(10): 2368-2372. doi: 10.3969/j.issn.1001-5256.2022.10.032
    [6]Yao LI, Jingchao WANG, Jiaqi YUAN, Hao WEN, Ying ZHOU, Haining FAN, Zhixin WANG. Influence of endoplasmic reticulum stress on the secretion of some inflammatory mediators in hepatic alveolar echinococcosis[J]. Journal of Clinical Hepatology, 2021, 37(1): 131-134. doi: 10.3969/j.issn.1001-5256.2021.01.026
    [7]Wang TingShuai, Wang Na, Zhang RongZhen, Wang MingGang, Huang ShaoDong, Ma YuZhen, Wu Cong, Mao DeWen. Role of immune response and inflammatory injury in the pathogenesis of liver failure[J]. Journal of Clinical Hepatology, 2020, 36(6): 1415-1419. doi: 10.3969/j.issn.1001-5256.2020.06.050
    [8]Yin JinPing, Yue ZiChen, Zhuo ShaoYuan. STAT3: A key molecule in the progression of liver cancer mediated by chronic inflammation[J]. Journal of Clinical Hepatology, 2020, 36(4): 948-952. doi: 10.3969/j.issn.1001-5256.2020.04.054
    [9]Liu Li, Li JunYi, Du YingRong, Huang HongLi, Luo Yu, Li HuiMin, Li WeiKun, Wang Lin, Liu ChunYun. Influencing factors for liver inflammation grade and fibrosis degree in patients with low-level HBV DNA[J]. Journal of Clinical Hepatology, 2019, 35(5): 982-986. doi: 10.3969/j.issn.1001-5256.2019.05.010
    [10]Guo Yan, Huang Li, Yang GuoChao, Liu Shan, Du LinNa, Wang MinJuan. Association between nonalcoholic fatty liver disease and dietary inflammation index and its practical significance[J]. Journal of Clinical Hepatology, 2019, 35(10): 2324-2326. doi: 10.3969/j.issn.1001-5256.2019.10.042
    [11]Ding Jie, Wang Liang, Li Juan, Kong Yin, Zhao Rui, He JingJing, Li GuangMing, Wang JuanXia, Zhang LingYi. Changes in serum asymmetric dimethylarginine levels in progression of liver inflammation in an experimental rat model of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2016, 32(1): 148-151. doi: 10.3969/j.issn.1001-5256.2016.01.029
    [12]Zhu JuanJuan, Cheng MingLiang, Zhao XueKe. Role of liver immunological inflammation in development and progression of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2016, 32(3): 570-573. doi: 10.3969/j.issn.1001-5256.2016.03.038
    [13]Li Qiang, Huang YuXian, Chen Liang. Simple serum markers for significant liver inflammation in chronic hepatitis B patients with an alanine aminotransferase level lower than 2 times upper limit of normal[J]. Journal of Clinical Hepatology, 2016, 32(6): 1125-1129. doi: 10.3969/j.issn.1001-5256.2016.06.021
    [14]Wu YuJing, Guo JinSheng. Hepatic stellate cells,Toll-like receptor 4 signaling pathway,and inflammatory fibrotic microenvironment in the development of hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2015, 31(6): 876-879. doi: 10.3969/j.issn.1001-5256.2015.06.012
    [15]Wu YinWei, Wen Jian, Zhao Wei, Zhang Liang, Song YuHua, Tan GuoLei, Zhao Lei. Study on the relationship in peripheral blood lymphocyte subsets and inflammation activity in liver tissue in patients with chronic hepatitis B infection[J]. Journal of Clinical Hepatology, 2008, 24(3): 180-182.
    [16]Xia Qi, Fu JieHai, Cai WeiMin, Liu RongHua. Diagnostic value of AST/PLT and GGT/PLT for hepatic fibrosis.[J]. Journal of Clinical Hepatology, 2007, 23(5): 364-366.
    [17]Dong HongYun, Zhao GuiMing, Li Ying. Study on the relationship between inflammation activity in the liver tissues and expression of HBcAg in patients with chronic hepatits B[J]. Journal of Clinical Hepatology, 2007, 23(1): 13-14.
    [18]Fang Ping, Wu TongSheng. The relation between the effect of lamivudine and inflammation grades in chronic hepatitis B[J]. Journal of Clinical Hepatology, 2003, 19(6): 349-350.
  • Cited by

    Periodical cited type(16)

    1. 余文君,余婷婷,李丽华,王红英,普冬,杨永锐. 血清生物标志物在慢性HBV感染自然史诊断中应用的研究进展. 医学理论与实践. 2025(03): 395-398 .
    2. 余文君,余婷婷,李丽华,王红英,普冬. 血清标志物在慢性HBV感染自然史中的诊断价值研究. 大理大学学报. 2025(02): 67-74 .
    3. 牛梦铱,杜建新,刘桂玲. 肝纤维化指标、外周血常规指标和GPR对重度慢性乙型肝炎的诊断价值及其相关性分析. 检验医学与临床. 2024(02): 178-182 .
    4. 陈媛,徐晶,谌翠容,孙振江,周婧玮. 乙型病毒性肝炎肝硬化患者血清cTNT、LPS水平、FIB-4指数与幽门螺杆菌感染的关系. 中华医院感染学杂志. 2024(07): 998-1001 .
    5. 吴旭光,马立华,占国祥,黄志刚. 无创炎症诊断模型在非酒精性脂肪性肝病合并乙型肝炎病毒感染患者肝纤维化诊断中的应用. 中国医师杂志. 2024(02): 245-249 .
    6. 赖长祥,唐情容,张秀连,唐奇远,李知玉,周旋,冼文杰,陈瑞坤,吴晓娟,王方. 年龄≤30岁慢性HBV感染者启动抗病毒治疗无创预测模型的构建及分析. 临床肝胆病杂志. 2024(07): 1328-1333 . 本站查看
    7. 姚建锋,陈正雷,张煜华. 实时二维超声剪切波弹性成像在慢性乙型肝炎肝纤维化分期中的临床应用. 罕少疾病杂志. 2024(10): 54-56 .
    8. 李晓宇,黄秀香,叶迎宾. 血清壳多糖酶3样蛋白1和PLT的比值与FIB-4指数在慢性乙型肝炎轻、中度诊断效价的比较. 标记免疫分析与临床. 2024(09): 1693-1697 .
    9. 刘雅茹,胡义扬,赵瑜. 基于证候积分的慢性乙型肝炎湿热证的中西医临床特征. 世界中医药. 2024(22): 3523-3530 .
    10. 曾伟梅,董常峰,黄琨,郑保奇,李志艳,冯程,陈昕,刘忠. 声触诊弹性成像线性结合超声评分细分慢性乙肝患者肝纤维化程度. 中华超声影像学杂志. 2023(02): 129-135 .
    11. 王娟霞,陈馨悦,魏世博,孙新策,朱浩宇,连唐悠悠,杜雨峰. 慢性乙型肝炎患者肝脏炎症程度预测模型的研究. 中国实用内科杂志. 2023(05): 390-395 .
    12. 梁紫茵,周伟泽,黄秀明,邓振雄,利旭辉. 分析基于4项因素的肝纤维化指数值动态变化对恩替卡韦治疗慢性乙型肝炎肝硬化病人患肝癌风险的预测价值. 安徽医药. 2023(06): 1211-1216 .
    13. 宋艺佳,刘素彤,张丽慧,赵文霞,刘鸣昊. 无创诊断与代偿期乙型肝炎肝硬化患者中医证型的相关性分析. 中西医结合肝病杂志. 2023(11): 981-985 .
    14. 贾梦山,刘加敏,杨艳霞. 血清Galectin-9和PD-L1对慢性乙型肝炎肝脏炎症程度的诊断价值. 分子诊断与治疗杂志. 2022(08): 1354-1357+1362 .
    15. 宣佳利. 维生素D对妊娠期高血压大鼠肝脏的保护作用及机制. 牡丹江医学院学报. 2022(05): 10-13 .
    16. 黄亮,郑世燕. LSM值、APRI、FIB-4、肝脏病理对肝病诊断运用价值. 中国当代医药. 2022(32): 46-48+57 .

    Other cited types(8)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 4.0 %FULLTEXT: 4.0 %META: 93.1 %META: 93.1 %PDF: 3.0 %PDF: 3.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.5 %其他: 4.5 %其他: 0.2 %其他: 0.2 %Brazil: 0.5 %Brazil: 0.5 %India: 0.2 %India: 0.2 %[]: 0.2 %[]: 0.2 %上海: 2.5 %上海: 2.5 %东京: 0.5 %东京: 0.5 %佛山: 0.2 %佛山: 0.2 %北京: 4.7 %北京: 4.7 %南京: 0.2 %南京: 0.2 %南宁: 0.2 %南宁: 0.2 %吉林: 1.0 %吉林: 1.0 %哥伦布: 0.2 %哥伦布: 0.2 %大连: 0.2 %大连: 0.2 %广州: 0.5 %广州: 0.5 %张家口: 3.0 %张家口: 3.0 %杭州: 0.2 %杭州: 0.2 %武汉: 1.0 %武汉: 1.0 %洛杉矶: 0.2 %洛杉矶: 0.2 %湖州: 0.2 %湖州: 0.2 %石家庄: 0.5 %石家庄: 0.5 %美国伊利诺斯芝加哥: 0.2 %美国伊利诺斯芝加哥: 0.2 %芒廷维尤: 30.9 %芒廷维尤: 30.9 %莫斯科: 1.5 %莫斯科: 1.5 %西宁: 44.6 %西宁: 44.6 %诺沃克: 0.2 %诺沃克: 0.2 %长春: 0.7 %长春: 0.7 %长沙: 0.2 %长沙: 0.2 %长治: 0.2 %长治: 0.2 %其他其他BrazilIndia[]上海东京佛山北京南京南宁吉林哥伦布大连广州张家口杭州武汉洛杉矶湖州石家庄美国伊利诺斯芝加哥芒廷维尤莫斯科西宁诺沃克长春长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1337) PDF downloads(294) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return