中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Regulatory role of mechanical forces in the formation of liver organoids

DOI: 10.3969/j.issn.1001-5256.2023.12.030
Research funding:

National Natural Science Foundation of China (81774282);

National Key Research and Development Program of China (2018YFC1705700);

Science and Technology Innovation Project of the China Academy of Chinese Medical Sciences (C12021A00801);

Science and Technology Innovation Project of the China Academy of Chinese Medical Sciences (C12021A00802)

More Information
  • Corresponding author: LYU Wenliang, lvwenliang@sohu.com (ORCID: 0000-0002-4552-919X)
  • Received Date: 2023-03-24
  • Accepted Date: 2023-04-19
  • Published Date: 2023-12-12
  • In recent years, the continuous advances in material sciences and techniques have helped with the establishment and development of liver organoids that can simulate the structure and function of organs in vivo. In addition to the research on traditional biological factors, the construction of microenvironments with different mechanical cues to investigate the influence of mechanical stimulation on the growth of liver organoids has also become a research focus. This article first discusses the development of liver organoids and then reviews the influence of mechanical forces of different properties on the formation of liver organoids, so as to lay a foundation for the construction of more complex and ordered liver organoids in vitro and provide ideal research models for understanding the interaction between biological and mechanical factors in the formation of liver organoids.

     

  • 原发性胆汁性胆管炎(PBC)是一种慢性进行性的胆汁淤积性肝病,90%以上的患者血清抗线粒体抗体(AMA)阳性,部分患者血清IgM水平升高,随着病情的缓解而有所下降[1],因此明确IgM水平与PBC发生、发展及转归的关系,对于指导PBC治疗及预后评估具有重要的临床意义。

    选取2010年1月—2020年1月于解放军总医院第五医学中心就诊的熊去氧胆酸(UDCA)初治PBC患者637例,所有患者均具有治疗1年以上的临床数据。纳入标准:(1)符合PBC诊断标准[2-3];(2)UDCA规范治疗(13~15 mg/kg)1年以上。排除标准:(1)合并其他的慢性肝病;(2)肝移植术后;(3)合并其他免疫性疾病、恶性肿瘤及感染性疾病;(4)资料不完整。

    采用回顾性分析的方法,采集患者性别、年龄及入院基线的血液学指标、生化指标、免疫学指标及影像学指标;并根据巴黎标准进行UDCA疗效判定[4-5],将PBC患者分为UDCA完全应答组和UDCA应答不良组(包括无应答及部分应答)。

    应用SPSS 22.0软件进行统计学分析。计量资料进行S-K正态性检验,符合正态分布的计量资料用x±s表示,两组间比较采用独立样本t检验;非正态分布的计量资料用M(P25~P75)表示,两组间比较采用Mann-Whitney U检验。计数资料两组间比较采用χ2检验。绘制受试者工作特征曲线(ROC曲线),根据ROC曲线下面积(AUC)评估其预测效能,计算约登指数确定最佳临界值。亚组分析使用Cochran-Mantel-Haenszel(CMH)检验,并绘制风险值森林图。P<0.05为差异有统计学意义。

    本研究共纳入PBC患者637例,其中男126例,女511例,平均56岁(50~66岁),基线IgM升高者357例(56.0%),UDCA完全应答者436例(68.4%),其他基线资料见表 1

    表  1  PBC患者基线特征及UDCA治疗1年后的应答情况
    Table  1.  Characteristics of patients with PBC at baseline and biochemical response to UDCA after 1 year of treatment
    基线特征 数值
    性别[例(%)]
    126(19.8)
    511(80.2)
    发病年龄(岁) 56(50~66)
    肝硬化[例(%)] 487(76.5)
    PLT(×109/L) 121(77~182)
    Alb(g/L) 35(31~38)
    TBil(μmol/L) 20.7(13.8~38.2)
    ALT(U/L) 53(27~95)
    AST(U/L) 69(41~105)
    ALP(U/L) 247(158~432)
    GGT(U/L) 163(81~374)
    TBA(μmol/L) 28(12~65)
    ChE(U/L) 4405(2922~5947)
    TC(mmol/L) 4.4(3.3~5.8)
    PT(s) 11.6(10.5~12.9)
    INR 1.01(0.94~1.12)
    IgA(g/L) 2.68(1.84~3.87)
    IgG(g/L) 15.67(12.83~20.41)
    IgM(g/L) 2.76(1.61~4.43)
    IgM>ULN[例(%)] 357(56.0)
    ANA阳性[例(%)] 469(73.6)
    抗Sp100阳性[例(%)] 94(14.8)
    抗Gp210阳性[例(%)] 218(34.2)
    MRS[6] 5.84±1.45
    Globe评分[7] 1.21(0.34~2.11)
    UK-PBC评分[8] 0.037(0.015~0.112)
    UDCA治疗1年[例(%)]
    完全应答 436(68.4)
    应答不良 201(31.6)
    注:TBA,总胆汁酸;ChE,胆碱酯酶。
    下载: 导出CSV 
    | 显示表格

    按照UDCA治疗应答情况,637例患者中436例发生完全应答,201例为应答不良。性别分布中,完全应答组与应答不良组分布无统计学意义(P值均>0.05),基线存在肝硬化的患者UDCA应答率更高(78.9% vs 71.1%,P=0.032),生化指标中,TBil、AST、ALP、TBA和TC在两组间存在统计学差异(P值均<0.001)。免疫指标中,应答不良组IgA、IgM水平及抗Gp210阳性率均较高(P值均<0.05)。预后风险评分中,应答不良组MRS、Globe评分、UK-PBC评分均高于完全应答组(P值均<0.001)(表 2)。

    表  2  UDCA治疗完全应答与应答不良患者基线指标及风险评分差异
    Table  2.  Differences of baseline characteristics and risk scores between PBC with complete response and poor response to UDCA treatment
    指标 UDCA完全应答组(n=436) UDCA应答不良组(n=201) 统计值 P
    性别[例(%)] χ2=3.112 0.078
    78(17.9) 48(23.9)
    358(82.1) 153(76.1)
    年龄(岁) 57(50~66) 54(49~65) Z=-1.447 0.148
    肝硬化[例(%)] 344(78.9) 143(71.1) χ2=4.596 0.032
    TBil(μmol/L) 17.5(12.1~26.1) 39.2(20.6~62.7) Z=-9.932 <0.001
    AST(U/L) 55(38~87) 99(69~135) Z=-8.931 <0.001
    ALP(U/L) 201(150~340) 390(237~599) Z=-8.361 <0.001
    TBA(μmol/L) 22(9~43) 54(20~121) Z=-7.836 <0.001
    TC(mmol/L) 4.2(3.2~5.3) 5.1(3.5~7.1) Z=-4.694 <0.001
    IgA(g/L) 2.55(1.75~3.61) 3.01(2.01~4.38) Z=-3.242 0.001
    IgG(g/L) 15.59(12.63~20.50) 15.73(12.97~20.16) Z=-0.227 0.821
    IgM(g/L) 2.60(1.56~4.30) 3.33(1.78~5.02) Z=-2.115 0.034
    ANA阳性[例(%)] 313(71.8) 156(77.6) χ2=2.402 0.121
    抗Sp100阳性[例(%)] 66(15.1) 28(13.9) χ2=0.159 0.690
    抗Gp210阳性[例(%)] 127(29.1) 91(45.3) χ2=15.931 <0.001
    MRS 5.68±1.45 6.18±1.41 t=4.092 <0.001
    Globe评分 0.83(0.14~1.66) 2.09(1.29~2.81) Z=-10.910 <0.001
    UK-PBC评分 0.025(0.012~0.058) 0.128(0.050~0.324) Z=-11.646 <0.001
    下载: 导出CSV 
    | 显示表格
    2.3.1   IgM升高与IgM正常PBC患者基线特征及治疗应答差异

    按照IgM升高与IgM正常将PBC患者分为两组,分析患者基线特征及治疗应答。性别分布、年龄、肝硬化占比在两组中比较差异均无统计学意义(P值均>0.05);生化指标中,AST、ALP、TC在IgM升高组显著高于IgM正常组(P值均<0.001);免疫指标中,IgA、IgG水平及抗Gp210阳性率在IgM升高组显著高于IgM正常组(P值均<0.05),但两组在UDCA治疗应答方面并无统计学差异(P>0.05)(表 3)。

    表  3  IgM升高与IgM正常的PBC患者基线特征及治疗应答差异
    Table  3.  Differences of baseline characteristics and biochemical response to UDCA treatment between IgM-normal and IgM-elevated PBC
    指标 IgM升高组(n=357) IgM正常组(n=280) 统计值 P
    性别[例(%)] χ2=0.525 0.469
    67(18.8) 59(21.1)
    290(81.2) 221(78.9)
    年龄(岁) 55(49~65) 57(50~67) Z=-1.776 0.076
    肝硬化[例(%)] 275(77.0) 212(75.7) χ2=0.151 0.698
    TBil(μmol/L) 20.4(14.0~38.2) 21.1(13.6~38.6) Z=-0.066 0.947
    AST(U/L) 75(45~106) 55(35~100) Z=-3.774 <0.001
    ALP(U/L) 275(173~478) 201(144~347) Z=-5.063 <0.001
    TBA(μmol/L) 29(13~60) 28(11~70) Z=-0.587 0.558
    TC(mmol/L) 4.8(3.6~6.2) 4.2(3.1~5.3) Z=-4.344 <0.001
    IgA(g/L) 2.83(1.96~3.91) 2.53(1.70~3.82) Z=-2.051 0.040
    IgG(g/L) 16.88(14.00~21.42) 14.04(11.87~18.50) Z=-6.144 <0.001
    ANA阳性[例(%)] 270(75.6) 199(71.1) χ2=1.680 0.195
    抗Sp100阳性[例(%)] 56(15.7) 38(13.6) χ2=0.558 0.455
    抗Gp210阳性[例(%)] 152(42.6) 66(23.6) χ2=25.180 <0.001
    MRS 5.78±1.46 5.91±1.43 t=-1.071 0.284
    Globe评分 1.18(0.29~2.12) 1.27(0.36~2.07) Z=-0.433 0.665
    UK-PBC评分 0.038(0.015~0.114) 0.037(0.015~0.108) Z=-0.416 0.677
    UDCA治疗1年[例(%)] χ2=2.580 0.108
    完全应答 235(65.8) 201(71.8)
    应答不良 122(34.2) 79(28.2)
    下载: 导出CSV 
    | 显示表格
    2.3.2   应用ROC曲线确定IgM最佳临界值

    将各项基线指标进行ROC曲线分析(图 1表 4),结果显示预测UDCA治疗1年后应答不良的生化指标包括TBil、AST、ALP、TBA、TC,免疫指标包括IgA、IgM、IgG,计算IgM最佳临界值为1.5×ULN。

    图  1  PBC患者基线指标预测UDCA治疗1年后应答不良的ROC曲线
    Figure  1.  ROC curves of characteristics at baseline in predicting poor response to UDCA after 1 year of treatment
    表  4  PBC患者基线指标预测UDCA治疗1年后应答不良的AUC
    Table  4.  AUC values of characteristics at baseline in predicting poor biochemical response to UDCA after 1 year of treatment
    指标 AUC 95%CI
    TBil 0.745 0.709~0.778
    AST 0.720 0.683~0.755
    ALP 0.706 0.669~0.741
    TBA 0.693 0.655~0.728
    TC 0.615 0.576~0.653
    IgA 0.576 0.537~0.615
    IgM 0.552 0.512~0.591
    IgG 0.505 0.466~0.545
    下载: 导出CSV 
    | 显示表格
    2.3.3   分析不同IgM水平PBC患者基线特征及治疗应答差异

    根据IgM预测UDCA应答不良的最佳临界值将患者分为IgM≥1.5×ULN及IgM<1.5×ULN两组,性别分布、年龄、肝硬化占比在两组中比较差异均无统计学意义(P值均>0.05);IgM≥1.5×ULN组AST、ALP、TC显著高于IgM<1.5×ULN组(P值均<0.05);IgM≥1.5×ULN组IgG水平及抗Gp210阳性率显著高于IgM<1.5×ULN组(P值均<0.001)。IgM≥1.5×ULN组经过UDCA治疗后发生应答不良患者显著高于IgM<1.5×ULN组(38.3% vs 27.1%,P=0.003)(表 5)。

    表  5  不同IgM水平PBC患者基线临床特征及UDCA疗效比较
    Table  5.  Comparison of baseline characteristics and the outcome of UDCA treatment between PBC with different levels of IgM
    指标 IgM≥1.5×ULN组(n=253) IgM<1.5×ULN组(n=384) 统计值 P
    性别[例(%)] χ2=0.038 0.846
    51(20.2) 75(19.5)
    202(79.8) 309(80.5)
    年龄(岁) 56(49~65) 56(50~66) Z=-1.077 0.281
    肝硬化[例(%)] 195(77.1) 292(76.0) χ2=0.090 0.764
    TBil(μmol/L) 21.0(14.3~38.0) 20.5(13.6~39.7) Z=-0.244 0.808
    AST(U/L) 78(46~112) 61(38~99) Z=-4.193 <0.001
    ALP(U/L) 288(179~492) 210(150~358) Z=-5.044 <0.001
    TBA(μmol/L) 28(13~57) 28(10~70) Z=-0.210 0.834
    TC(mmol/L) 4.8(3.6~6.3) 4.3(3.2~5.5) Z=-3.250 0.001
    IgA(g/L) 2.81(1.90~3.85) 2.63(1.76~3.87) Z=-1.021 0.307
    IgG(g/L) 17.60(14.09~22.10) 14.89(12.15~19.32) Z=-5.465 <0.001
    ANA阳性[例(%)] 192(75.9) 277(72.1) χ2=1.107 0.293
    抗Sp100阳性[例(%)] 44(17.4) 50(13.0) χ2=2.316 0.128
    抗Gp210阳性[例(%)] 116(45.8) 102(26.6) χ2=25.204 <0.001
    MRS 5.71±1.43 5.92±1.46 t=-1.792 0.074
    Globe评分 1.17(0.36~2.14) 1.28(0.29~2.07) Z=-0.161 0.872
    UK-PBC评分 0.038(0.014~0.119) 0.037(0.015~0.109) Z=-0.481 0.631
    UDCA治疗1年[例(%)] χ2=8.948 0.003
    完全应答 156(61.7) 280(72.9)
    应答不良 97(38.3) 104(27.1)
    下载: 导出CSV 
    | 显示表格

    对IgM≥1.5×ULN组及IgM<1.5×ULN组两组的各项指标进行预测应答不良的风险值分析,结果显示IgM≥1.5×ULN组相对IgM<1.5×ULN组预测整体应答不良的风险值为1.416 (95%CI:1.129~1.776, P=0.003)。亚组分析中,无肝硬化患者,IgM≥1.5×ULN预测应答不良风险值为1.821(95%CI:1.224~2.711, P=0.003)。其他情况详见图 2

    图  2  IgM≥1.5×ULN相对IgM<1.5×ULN预测治疗应答情况亚组分析森林图
    Figure  2.  Forest plot for subgroup analysis by IgM≥1.5×ULN versus IgM < 1.5×ULN in predicting treatment response of UDCA

    IgM具有强大的杀菌、激活补体、免疫调理和凝集作用,通常出现在初次体液免疫应答的最早阶段,是连接固有免疫和获得性免疫的纽带,也参与某些自身免疫疾病和超敏反应的病理过程。PBC是一种器官特异性的自身免疫性疾病,IgM升高是PBC典型的血清学特征之一,但是其升高的机制至今尚未完全阐明,外源微生物的分子模拟、免疫耐受性的破坏、免疫功能紊乱可能是导致高IgM水平的重要原因[9-10],IgM在PBC疾病进程中可能发挥免疫调节及免疫损伤的双重作用[9]。不同于PBC,自身免疫性肝炎(AIH)患者以IgG升高为主,其水平随着病情缓解而逐渐下降,IgG是AIH疾病转归的重要监测指标之一。作为PBC常规检测项目,IgM并未被国内外指南纳入诊疗和预后评估的指标。IgM在PBC发生、发展、疗效及转归中是否具有预测价值,目前尚缺乏大量的临床研究结果作为指导。

    UDCA是PBC治疗的一线药物,可显著改善部分PBC患者非肝移植存活率[11-12],但仍有30%~40%的患者对UDCA治疗无应答,本研究中显示UDCA完全应答率为68.4%,对于这部分患者需要及时联合一种或两种二线药物来改善胆汁淤积以预防疾病进展[13]。UDCA治疗可能影响IgM水平,研究[14]发现UDCA能够显著降低细菌CpG诱导的总IgM和IgM-AMA的产生,但对IgG-AMA的水平却无影响。IgM与肝硬化相关症状和肝脏相关事件的发生关系密切,在UDCA联合苯扎贝特治疗过程中,不论ALP及GGT下降与否,当IgM水平持续异常时,患者的预后均较差,其生存期显著低于IgM水平正常化的患者,治疗过程中IgM水平的逐步正常化可能提示预后较好[15]。对于UDCA不完全应答的PBC患者,在给予联合利妥昔单抗治疗后,IgM水平随着肝功能指标的好转而逐步下降[16]。IgM正常化可作为长期预后的预测指标,但初始IgM正常患者IgM水平的变化情况及预测因素尚缺乏研究。在本研究中,UDCA治疗基线IgM平均水平为2.76 g/L,IgM升高的占比为56.0%,在UDCA完全应答组与应答不良组之间,基线IgM水平存在显著性差异(P=0.034),进一步分析IgM升高与IgM正常组患者的临床特征及在UDCA治疗1年后的疗效差异,发现IgM正常组UDCA应答率高于IgM升高组(71.8% vs 65.8%),但两组差异无统计学意义(P=0.108),通过ROC曲线分析获得IgM预测UDCA治疗1年后应答不良风险的最佳临界值(1.5×ULN),按最佳临界值进行分组后,结果显示IgM<1.5×ULN组的PBC患者发生UDCA应答率显著高于IgM≥1.5×ULN组(72.9% vs 61.7%, P=0.003),IgM≥1.5×ULN组发生UDCA应答不良风险是前者的1.416倍(95%CI: 1.129~1.776),因此基线IgM水平可能有助于预测PBC治疗应答。

    IgM是进展期PBC的危险因素,与PBC胆管损伤及纤维化密切相关。进展期PBC的肝组织中IgM表达水平显著升高[17],在胆道闭锁的患儿中,靶向胆管上皮细胞的IgM自身抗体能够激活补体并参与肝纤维化的发生,从而使疾病不断进展[18-19]。在本研究中血清IgM升高组的PBC患者,其肝硬化占比也偏高,因是回顾性研究,患者缺乏UDCA治疗基线及治疗后的组织学证据,无法评估IgM与疾病进展、转归之间的相关性,今后尚需要进一步完善。

    UDCA生化应答的PBC患者具有较好的预后,即使进展为肝硬化的患者,如仍处于代偿期,也可达到延长生存期、降低肝病相关病死率及肝移植需求的目标[20]。MRS是一种常用的预测生存概率模型,最初用于筛选肝移植对象和确定肝移植手术时机[6],MRS对于失代偿期肝硬化的PBC患者也具有较强的预测性。UK-PBC评分[8]及GLOBE评分[7]是近年来被采用的PBC预后模型。在接受UDCA治疗的PBC患者中,MRS、UK-PBC评分和GLOBE评分对患者肝移植或死亡的风险预测均具有较好的准确性[21]。本研究结果显示MRS、Globe评分、UK-PBC评分在UDCA完全应答组及应答不良组之间均具有显著性差异,提示UDCA完全应答组的非肝移植存活率均显著高于应答不良组,但在IgM升高组和正常组之间以及IgM≥1.5×ULN组和IgM<1.5×ULN组之间,三种预测模型评分均无明显差异,这说明基线IgM水平还不能作为独立预测非肝移植存活率的指标。

    总之,本研究结果提示基线IgM水平对于预测UDCA应答具有重要价值,基线IgM水平较高的PBC患者,治疗中应密切监测IgM水平,如持续异常,应及时联合二线药物治疗。

  • [1]
    TREFTS E, GANNON M, WASSERMAN DH. The liver[J]. Curr Biol, 2017, 27( 21): R1147- R1151. DOI: 10.1016/j.cub.2017.09.019.
    [2]
    COLLINO A, TERMANINI A, NICOLI P, et al. Sustained activation of detoxification pathways promotes liver carcinogenesis in response to chronic bile acid-mediated damage[J]. PLoS Genet, 2018, 14( 5): e1007380. DOI: 10.1371/journal.pgen.1007380.
    [3]
    ROBINSON MW, HARMON C, O’FARRELLY C. Liver immunology and its role in inflammation and homeostasis[J]. Cell Mol Immunol, 2016, 13( 3): 267- 276. DOI: 10.1038/cmi.2016.3.
    [4]
    LI WP, LI L, HUI LJ. Cell plasticity in liver regeneration[J]. Trends Cell Biol, 2020, 30( 4): 329- 338. DOI: 10.1016/j.tcb.2020.01.007.
    [5]
    LI C, ZHANG ZT, DONG SS, et al. Applications of liver organoids[J]. Sci Sin Vitae, 2023, 53( 2): 175- 184.

    李春, 章正涛, 董双舒, 等. 肝脏类器官的应用[J]. 中国科学: 生命科学, 2023, 53( 2): 175- 184.
    [6]
    NESHAT SY, QUIROZ VM, WANG YJ, et al. Liver disease: Induction, progression, immunological mechanisms, and therapeutic interventions[J]. Int J Mol Sci, 2021, 22( 13): 6777. DOI: 10.3390/ijms22136777.
    [7]
    WANG FS, FAN JG, ZHANG Z, et al. The global burden of liver disease: The major impact of China[J]. Hepatology, 2014, 60( 6): 2099- 2108. DOI: 10.1002/hep.27406.
    [8]
    DUVAL K, GROVER H, HAN LH, et al. Modeling physiological events in 2D vs. 3D cell culture[J]. Physiology, 2017, 32( 4): 266- 277. DOI: 10.1152/physiol.00036.2016.
    [9]
    BAXTER M, WITHEY S, HARRISON S, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes[J]. J Hepatol, 2015, 62( 3): 581- 589. DOI: 10.1016/j.jhep.2014.10.016.
    [10]
    MARIOTTI V, STRAZZABOSCO M, FABRIS L, et al. Animal models of biliary injury and altered bile acid metabolism[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864( 4 Pt B): 1254- 1261. DOI: 10.1016/j.bbadis.2017.06.027.
    [11]
    CAMP JG, SEKINE K, GERBER T, et al. Multilineage communication regulates human liver bud development from pluripotency[J]. Nature, 2017, 546( 7659): 533- 538. DOI: 10.1038/nature22796.
    [12]
    AZIMIAN ZAVAREH V, RAFIEE L, SHEIKHOLESLAM M, et al. Three-dimensional in vitro models: A promising tool to scale-up breast cancer research[J]. ACS Biomater Sci Eng, 2022, 8( 11): 4648- 4672. DOI: 10.1021/acsbiomaterials.2c00277.
    [13]
    TAGHDOUINI A EL, SØRENSEN AL, REINER AH, et al. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells[J]. Oncotarget, 2015, 6( 29): 26729- 26745. DOI: 10.18632/oncotarget.4925.
    [14]
    SHINOZAWA T, KIMURA M, CAI YQ, et al. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids[J]. Gastroenterology, 2021, 160( 3): 831- 846. DOI: 10.1053/j.gastro.2020.10.002.
    [15]
    NERO C, VIZZIELLI G, LORUSSO D, et al. Patient-derived organoids and high grade serous ovarian cancer: From disease modeling to personalized medicine[J]. J Exp Clin Cancer Res, 2021, 40( 1): 116. DOI: 10.1186/s13046-021-01917-7.
    [16]
    LANCASTER MA, KNOBLICH JA. Organogenesis in a dish: Modeling development and disease using organoid technologies[J]. Science, 2014, 345( 6194): 1247125. DOI: 10.1126/science.1247125.
    [17]
    HUCH M, GEHART H, VAN BOXTEL R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver[J]. Cell, 2015, 160( 1-2): 299- 312. DOI: 10.1016/j.cell.2014.11.050.
    [18]
    AKBARI S, SEVINÇ GG, ERSOY N, et al. Robust, long-term culture of endoderm-derived hepatic organoids for disease modeling[J]. Stem Cell Reports, 2019, 13( 4): 627- 641. DOI: 10.1016/j.stemcr.2019.08.007.
    [19]
    HU HL, GEHART H, ARTEGIANI B, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids[J]. Cell, 2018, 175( 6): 1591- 1606.e19. DOI: 10.1016/j.cell.2018.11.013.
    [20]
    TAKASATO M, ER PX, CHIU HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis[J]. Nature, 2015, 526( 7574): 564- 568. DOI: 10.1038/nature15695.
    [21]
    SCHUTGENS F, ROOKMAAKER MB, MARGARITIS T, et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling[J]. Nat Biotechnol, 2019, 37( 3): 303- 313. DOI: 10.1038/s41587-019-0048-8.
    [22]
    CHUA CW, SHIBATA M, LEI M, et al. Single luminal epithelial progenitors can generate prostate organoids in culture[J]. Nat Cell Biol, 2014, 16( 10): 951- 961, 1- 4. DOI: 10.1038/ncb3047.
    [23]
    SACHS N, PAPASPYROPOULOS A, ZOMER-VAN OMMEN DD, et al. Long-term expanding human airway organoids for disease modeling[J]. EMBO J, 2019, 38( 4): e100300. DOI: 10.15252/embj.2018100300.
    [24]
    JO J, XIAO YX, SUN AX, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons[J]. Cell Stem Cell, 2016, 19( 2): 248- 257. DOI: 10.1016/j.stem.2016.07.005.
    [25]
    BROUTIER L, MASTROGIOVANNI G, VERSTEGEN MM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nat Med, 2017, 23( 12): 1424- 1435. DOI: 10.1038/nm.4438.
    [26]
    ZHANG YJ, HUANG SB, LIU J, et al. Construction and application of innovation gene-edited rats and intestinal 3D organoids models in drug metabolism and pharmacokinetics[J]. Chin J Clin Pharmacol Ther, 2021, 26( 8): 914- 922. DOI: 10.12092/j.issn.1009-2501.2021.08.006.

    张远金, 黄盛博, 刘洁, 等. 药物代谢创新模型:基因编辑大鼠和小肠3D类器官[J]. 中国临床药理学与治疗学, 2021, 26( 8): 914- 922. DOI: 10.12092/j.issn.1009-2501.2021.08.006.
    [27]
    WANG YQ, WANG P, QIN JH. Human organoids and organs-on-chips for addressing COVID-19 challenges[J]. Adv Sci, 2022, 9( 10): e2105187. DOI: 10.1002/advs.202105187.
    [28]
    GAO D, VELA I, SBONER A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159( 1): 176- 187. DOI: 10.1016/j.cell.2014.08.016.
    [29]
    CLEVERS H. Modeling development and disease with organoids[J]. Cell, 2016, 165( 7): 1586- 1597. DOI: 10.1016/j.cell.2016.05.082.
    [30]
    MICHALOPOULOS GK, BOWEN WC, MULÈ K, et al. Histological organization in hepatocyte organoid cultures[J]. Am J Pathol, 2001, 159( 5): 1877- 1887. DOI: 10.1016/S0002-9440(10)63034-9.
    [31]
    LIN L, LEI M, LIN JM, et al. Advances and applications in liver organoid technology[J]. Sci Sin Vitae, 2023, 53( 2): 185- 195.

    林丽, 雷妙, 林佳漫, 等. 肝脏类器官的研究进展及应用[J]. 中国科学: 生命科学, 2023, 53( 2): 185- 195.
    [32]
    HUCH M, DORRELL C, BOJ SF, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration[J]. Nature, 2013, 494( 7436): 247- 250. DOI: 10.1038/nature11826.
    [33]
    OGAWA M, OGAWA S, BEAR CE, et al. Directed differentiation of cholangiocytes from human pluripotent stem cells[J]. Nat Biotechnol, 2015, 33( 8): 853- 861. DOI: 10.1038/nbt.3294.
    [34]
    SAMPAZIOTIS F, DE BRITO MC, MADRIGAL P, et al. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation[J]. Nat Biotechnol, 2015, 33( 8): 845- 852. DOI: 10.1038/nbt.3275.
    [35]
    DIANAT N, DUBOIS-POT-SCHNEIDER H, STEICHEN C, et al. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells[J]. Hepatology, 2014, 60( 2): 700- 714. DOI: 10.1002/hep.27165.
    [36]
    WU FF, WU D, REN Y, et al. Generation of hepatobiliary organoids from human induced pluripotent stem cells[J]. J Hepatol, 2019, 70( 6): 1145- 1158. DOI: 10.1016/j.jhep.2018.12.028.
    [37]
    LI YW, WONG IY, GUO M. Reciprocity of cell mechanics with extracellular stimuli: Emerging opportunities for translational medicine[J]. Small, 2022, 18( 36): e2107305. DOI: 10.1002/smll.202107305.
    [38]
    HERRERA J, HENKE CA, BITTERMAN PB. Extracellular matrix as a driver of progressive fibrosis[J]. J Clin Invest, 2018, 128( 1): 45- 53. DOI: 10.1172/JCI93557.
    [39]
    FAN QH, ZHENG Y, WANG XC, et al. Dynamically re-organized collagen fiber bundles transmit mechanical signals and induce strongly correlated cell migration and self-organization[J]. Angew Chem Int Ed Engl, 2021, 60( 21): 11858- 11867. DOI: 10.1002/anie.202016084.
    [40]
    NIA HT, DATTA M, SEANO G, et al. In vivo compression and imaging in mouse brain to measure the effects of solid stress[J]. Nat Protoc, 2020, 15( 8): 2321- 2340. DOI: 10.1038/s41596-020-0328-2.
    [41]
    PRIYA R, ALLANKI S, GENTILE A, et al. Tension heterogeneity directs form and fate to pattern the myocardial wall[J]. Nature, 2020, 588( 7836): 130- 134. DOI: 10.1038/s41586-020-2946-9.
    [42]
    MUNCIE JM, AYAD NME, LAKINS JN, et al. Mechanical tension promotes formation of gastrulation-like nodes and patterns mesoderm specification in human embryonic stem cells[J]. Dev Cell, 2020, 55( 6): 679- 694.e11. DOI: 10.1016/j.devcel.2020.10.015.
    [43]
    XUE XF, SUN YB, RESTO-IRIZARRY AM, et al. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells[J]. Nat Mater, 2018, 17( 7): 633- 641. DOI: 10.1038/s41563-018-0082-9.
    [44]
    ABHILASH AS, BAKER BM, TRAPPMANN B, et al. Remodeling of fibrous extracellular matrices by contractile cells: Predictions from discrete fiber network simulations[J]. Biophys J, 2014, 107( 8): 1829- 1840. DOI: 10.1016/j.bpj.2014.08.029.
    [45]
    POLING HM, WU D, BROWN N, et al. Mechanically induced development and maturation of human intestinal organoids in vivo[J]. Nat Biomed Eng, 2018, 2( 6): 429- 442. DOI: 10.1038/s41551-018-0243-9.
    [46]
    LI YW, CHEN MR, HU JL, et al. Volumetric compression induces intracellular crowding to control intestinal organoid growth via Wnt/β-catenin signaling[J]. Cell Stem Cell, 2021, 28( 1): 63- 78. DOI: 10.1016/j.stem.2020.09.012.
    [47]
    WANG L, LUO JY, LI BC, et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow[J]. Nature, 2016, 540( 7634): 579- 582. DOI: 10.1038/nature20602.
    [48]
    STEWART MP, HELENIUS J, TOYODA Y, et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding[J]. Nature, 2011, 469( 7329): 226- 230. DOI: 10.1038/nature09642.
    [49]
    CAI DF, FELICIANO D, DONG P, et al. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression[J]. Nat Cell Biol, 2019, 21( 12): 1578- 1589. DOI: 10.1038/s41556-019-0433-z.
    [50]
    DABAGH M, JALALI P, BUTLER PJ, et al. Mechanotransmission in endothelial cells subjected to oscillatory and multi-directional shear flow[J]. J R Soc Interface, 2017, 14( 130): 20170185. DOI: 10.1098/rsif.2017.0185.
    [51]
    DASH A, SIMMERS MB, DEERING TG, et al. Hemodynamic flow improves rat hepatocyte morphology, function, and metabolic activity in vitro[J]. Am J Physiol Cell Physiol, 2013, 304( 11): C1053- C1063. DOI: 10.1152/ajpcell.00331.2012.
    [52]
    WANG YQ, WANG H, DENG PW, et al. In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system[J]. Lab Chip, 2018, 18( 23): 3606- 3616. DOI: 10.1039/c8lc00869h.
    [53]
    ZHENG Y, XUE XF, SHAO Y, et al. Controlled modelling of human epiblast and amnion development using stem cells[J]. Nature, 2019, 573( 7774): 421- 425. DOI: 10.1038/s41586-019-1535-2.
    [54]
    HOMAN KA, GUPTA N, KROLL KT, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro[J]. Nat Methods, 2019, 16( 3): 255- 262. DOI: 10.1038/s41592-019-0325-y.
    [55]
    KANG YBA, SODUNKE TR, LAMONTAGNE J, et al. Liver sinusoid on a chip: Long-term layered co-culture of primary rat hepatocytes and endothelial cells in microfluidic platforms[J]. Biotechnol Bioeng, 2015, 112( 12): 2571- 2582. DOI: 10.1002/bit.25659.
    [56]
    HOFER M, LUTOLF MP. Engineering organoids[J]. Nat Rev Mater, 2021, 6( 5): 402- 420. DOI: 10.1038/s41578-021-00279-y.
    [57]
    JUNG DJ, BYEON JH, JEONG GS. Flow enhances phenotypic and maturation of adult rat liver organoids[J]. Biofabrication, 2020, 12( 4): 045035. DOI: 10.1088/1758-5090/abb538.
    [58]
    MICHIELIN F, GIOBBE GG, LUNI C, et al. The microfluidic environment reveals a hidden role of self-organizing extracellular matrix in hepatic commitment and organoid formation of hiPSCs[J]. Cell Rep, 2020, 33( 9): 108453. DOI: 10.1016/j.celrep.2020.108453.
    [59]
    KRATOCHVIL MJ, SEYMOUR AJ, LI TL, et al. Engineered materials for organoid systems[J]. Nat Rev Mater, 2019, 4( 9): 606- 622. DOI: 10.1038/s41578-019-0129-9.
    [60]
    KANNINEN LK, HARJUMÄKI R, PELTONIEMI P, et al. Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells[J]. Biomaterials, 2016, 103: 86- 100. DOI: 10.1016/j.biomaterials.2016.06.054.
    [61]
    GJOREVSKI N, SACHS N, MANFRIN A, et al. Designer matrices for intestinal stem cell and organoid culture[J]. Nature, 2016, 539( 7630): 560- 564. DOI: 10.1038/nature20168.
    [62]
    NG S, TAN WJ, PEK MMX, et al. Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture[J]. Biomaterials, 2019, 219: 119400. DOI: 10.1016/j.biomaterials.2019.119400.
    [63]
    ZHANG Y, TANG CL, SPAN PN, et al. Polyisocyanide hydrogels as a tunable platform for mammary gland organoid formation[J]. Adv Sci, 2020, 7( 18): 2001797. DOI: 10.1002/advs.202001797.
    [64]
    LANGHANS SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning[J]. Front Pharmacol, 2018, 9: 6. DOI: 10.3389/fphar.2018.00006.
    [65]
    LIU ZX, FU JX, YUAN HB, et al. Polyisocyanide hydrogels with tunable nonlinear elasticity mediate liver carcinoma cell functional response[J]. Acta Biomater, 2022, 148: 152- 162. DOI: 10.1016/j.actbio.2022.06.022.
    [66]
    SORRENTINO G, REZAKHANI S, YILDIZ E, et al. Mechano-modulatory synthetic niches for liver organoid derivation[J]. Nat Commun, 2020, 11( 1): 3416. DOI: 10.1038/s41467-020-17161-0.
    [67]
    LIU-CHITTENDEN Y, HUANG B, SHIM JS, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP[J]. Genes Dev, 2012, 26( 12): 1300- 1305. DOI: 10.1101/gad.192856.112.
    [68]
    KECHAGIA JZ, IVASKA J, ROCA-CUSACHS P. Integrins as biomechanical sensors of the microenvironment[J]. Nat Rev Mol Cell Biol, 2019, 20( 8): 457- 473. DOI: 10.1038/s41580-019-0134-2.
    [69]
    CHO S, IRIANTO J, DISCHER DE. Mechanosensing by the nucleus: From pathways to scaling relationships[J]. J Cell Biol, 2017, 216( 2): 305- 315. DOI: 10.1083/jcb.201610042.
    [70]
    CHARRAS G, SAHAI E. Physical influences of the extracellular environment on cell migration[J]. Nat Rev Mol Cell Biol, 2014, 15( 12): 813- 824. DOI: 10.1038/nrm3897.
    [71]
    FLETCHER DA, MULLINS RD. Cell mechanics and the cytoskeleton[J]. Nature, 2010, 463( 7280): 485- 492. DOI: 10.1038/nature08908.
    [72]
    HAN YL, RONCERAY P, XU GQ, et al. Cell contraction induces long-ranged stress stiffening in the extracellular matrix[J]. Proc Natl Acad Sci U S A, 2018, 115( 16): 4075- 4080. DOI: 10.1073/pnas.1722619115.
    [73]
    CHAUDHURI O, GU L, KLUMPERS D, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity[J]. Nat Mater, 2016, 15( 3): 326- 334. DOI: 10.1038/nmat4489.
    [74]
    RIZWAN M, LING C, GUO CY, et al. Viscoelastic Notch signaling hydrogel induces liver bile duct organoid growth and morphogenesis[J]. Adv Healthc Mater, 2022, 11( 23): e2200880. DOI: 10.1002/adhm.202200880.
    [75]
    GÜNTHER C, WINNER B, NEURATH MF, et al. Organoids in gastrointestinal diseases: From experimental models to clinical translation[J]. Gut, 2022, 71( 9): 1892- 1908. DOI: 10.1136/gutjnl-2021-326560.
    [76]
    BEATTY R, MENDEZ KL, SCHREIBER LHJ, et al. Soft robot-mediated autonomous adaptation to fibrotic capsule formation for improved drug delivery[J]. Sci Robot, 2023, 8( 81): eabq4821. DOI: 10.1126/scirobotics.abq4821.
  • Relative Articles

    [1]Shuang ZHAO, Yuxuan ZHU, Yue LIU, Jing WANG, Qun LI, Minghui WANG, Qianqian DONG, Feifei FAN, Xiaofeng LIU. Influencing factors for rebleeding after endoscopic therapy in patients with liver cirrhosis receiving secondary prevention of gastroesophageal varices[J]. Journal of Clinical Hepatology, 2024, 40(12): 2430-2440. doi: 10.12449/JCH241213
    [2]Zhipeng CHEN, Fang YIN. Influence of patent paraumbilical vein on the development of esophageal varices and esophageal variceal bleeding in liver cirrhosis: A protective factor or a risk factor?[J]. Journal of Clinical Hepatology, 2022, 38(4): 918-922. doi: 10.3969/j.issn.1001-5256.2022.04.036
    [3]Qingjuan HE, Yingxia FANG, Xuchen LIU, Zhongbin LI. Risk factors for rebleeding after emergency esophageal variceal ligation in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2022, 38(8): 1801-1805. doi: 10.3969/j.issn.1001-5256.2022.08.016
    [4]Jia LIAN, Tao HAN, Huiling XIANG, Yankai YANG, Tinghong LI, Lei LIU, Baiguo XU, Lixia SUN, Fei WANG, Yanchao FU. Influencing factors of rebleeding after gastroscopy in patients with liver cirrhosis and esophagogastric variceal bleeding[J]. Journal of Clinical Hepatology, 2021, 37(9): 2092-2096. doi: 10.3969/j.issn.1001-5256.2021.09.018
    [5]Yan ZHANG, Huiguo DING. Risk factors for early rebleeding after endoscopic therapy for esophageal varices in cirrhotic patients[J]. Journal of Clinical Hepatology, 2021, 37(9): 2087-2091. doi: 10.3969/j.issn.1001-5256.2021.09.017
    [6]Pengpeng DING, Canghai WANG, Li LI, Jianhong CHEN, Xiaobao QI, Yanling WANG, Zheng LU, Wenhui ZHANG, Hong LIU. Risk factors for hemostatic failure in emergency gastroscopic sclerotherapy combined with tissue adhesive injection for esophagogastric variceal bleeding with portal vein embolus[J]. Journal of Clinical Hepatology, 2021, 37(1): 68-72. doi: 10.3969/j.issn.1001-5256.2021.01.014
    [7]Yingying CAO, Tao HAN, Yu ZHANG, Fang LIU, Jing LIANG, Haixia YUAN, Jun LI, Huiling XIANG. Rebleeding and prognosis of patients with liver cirrhosis and severe esophagogastric variceal bleeding[J]. Journal of Clinical Hepatology, 2021, 37(6): 1326-1330. doi: 10.3969/j.issn.1001-5256.2021.06.022
    [8]Huaiwen ZUO, Qimei SHA, Jiao SUN, Zhihui CAI, Hongwei XU, Hui LIU. Risk factors of portal vein thrombosis in cirrhotic patients with esophageal varices[J]. Journal of Clinical Hepatology, 2021, 37(1): 63-67. doi: 10.3969/j.issn.1001-5256.2021.01.013
    [9]Ruan FangMing, Li BiMin. Risk factors for the formation of portal vein thrombosis in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2020, 36(1): 182-185. doi: 10.3969/j.issn.1001-5256.2020.01.043
    [10]Yao YunHai, Luo Yan, Zhu JingLe, Gan JianHe, Zhao WeiFeng. Risk factors for hepatic encephalopathy after emergency transjugular intrahepatic portosystemic shunt for patients with acute esophagogastric variceal bleeding[J]. Journal of Clinical Hepatology, 2020, 36(2): 343-347. doi: 10.3969/j.issn.1001-5256.2020.02.022
    [11]Lyu Jing, Dong SiSi, Gu HongTu, Zhao ZhangQing, Liu ChengHai. TCM syndrome characteristics of portal vein thrombosis in patients with liver cirrhosis and related risk factors[J]. Journal of Clinical Hepatology, 2019, 35(10): 2210-2213. doi: 10.3969/j.issn.1001-5256.2019.10.016
    [12]Sun YaNan, Li Peng, Ding HuiGuo, Zhang ShiBin, Xiong Feng. Risk factors for early rebleeding after initial sclerotherapy for esophageal varices[J]. Journal of Clinical Hepatology, 2019, 35(1): 92-97. doi: 10.3969/j.issn.1001-5256.2019.01.017
    [13]Cui CanCan, Li DanDan, Li ZhangFeng, Yan ZhenKun, Wang LiQiang, Sun Chen, Zhang Ke, Zhang Bin. Risk factors for early rebleeding after first-time endoscopic variceal ligation[J]. Journal of Clinical Hepatology, 2018, 34(7): 1445-1451. doi: 10.3969/j.issn.1001-5256.2018.07.017
    [14]Ma JiaLi, Li Ping, Wei HongShan, Zhou YuLing, Liang XiuXia, Hu JuLong, Ai ZhengLin, Chen Xu. Risk factors for glue extrusion bleeding after endoscopic therapy for esophagogastric variceal bleeding[J]. Journal of Clinical Hepatology, 2018, 34(1): 89-91. doi: 10.3969/j.issn.1001-5256.2018.01.018
    [15]He Yang, Su YaRong, Han ZiYan. Current status of research on primary and secondary risk factors for esophagogastric variceal rebleeding in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2018, 34(7): 1555-1559. doi: 10.3969/j.issn.1001-5256.2018.07.041
    [16]Zhou RenHua, Li Peng, Zhang YanTing, Yang Hua, Yang ShaoQi. Clinical manifestations of portal vein thrombosis and related risk factors in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2016, 32(2): 275-278. doi: 10.3969/j.issn.1001-5256.2016.02.015
    [17]Gu Chuan, Li Lu, Wang Jun, Hou FengQin, Xu XiaoYuan. Study on efficacy of endoscopic ligation therapy for esophageal varices and risk factors for postoperative rebleeding[J]. Journal of Clinical Hepatology, 2014, 30(12): 1279-1282. doi: 10.3969/j.issn.1001-5256.2014.12.011
    [18]Yang Hua, Liu YunXia, Li Peng, Yang ShaoQi, Wang YuanZhen. Analysis of risk factors for early rebleeding from esophageal and gastric varices in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2014, 30(6): 540-542. doi: 10.3969/j.issn.1001-5256.2014.06.015
    [19]Yang Yan, Fan YanHua, Fang Long, Gao Chun, Du ShiYu, Zhang MingGang, Wang YuanXin, Zhang KeJian. Risk factors of early rebleeding after endoscopic treatment of gastroesophageal varices[J]. Journal of Clinical Hepatology, 2013, 29(3): 178-183.
    [20]Shao CuiPing, Xu XiaoYuan. Progress in the prevention and treatment of bleeding gastroesophageal varices in patients with cirrhosis[J]. Journal of Clinical Hepatology, 2012, 28(9): 647-650.
  • Cited by

    Periodical cited type(7)

    1. 张玉婷,李嘉泰,宋晓静,丁方回,岳平,闫少林,李俊峰,张立婷,李汛. 不同IgM水平的原发性胆汁性胆管炎患者治疗应答及预后特点分析. 胃肠病学和肝病学杂志. 2025(02): 250-253 .
    2. 张玲玲,张会品,李桂英,孔燕,马兰. 抗线粒体抗体、红细胞体积分布宽度与原发性胆汁性胆管炎熊去氧胆酸治疗应答效果的关系. 中国医药导报. 2024(04): 100-103 .
    3. 张晓芳,徐海峰,章颖. LSM、PNI、Mayo评分对PBC相关肝硬化的预测价值. 南通大学学报(医学版). 2024(02): 131-135 .
    4. 何学元,马建勋,杨屹立,张敏,潘新民. 布地奈德治疗熊去氧胆酸治疗不应答的原发性胆汁性胆管炎患者疗效及血清氧化应激指标的变化. 实用肝脏病杂志. 2023(03): 376-379 .
    5. 邢雪梅,杨建睿,李治君,陈雅娟,姚凤霞,刘征. 免疫球蛋白用于原发性胆汁性胆管炎、戊型肝炎、肝硬化的鉴别诊断. 基础医学与临床. 2023(08): 1271-1274 .
    6. 李兆明,章颖,邹美银. TBA、IgM、FIB-4评分对原发性胆汁性胆管炎患者肝纤维化的诊断价值. 胃肠病学和肝病学杂志. 2023(11): 1254-1257 .
    7. 赵永春,刘锦云,刘晓瑞. 醋酸泼尼松龙联合熊去氧胆酸对PBC患者预后的影响. 河南医学高等专科学校学报. 2023(06): 637-640 .

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (391) PDF downloads(52) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return