中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Mechanism of action of lipotoxicity in nonalcoholic steatohepatitis

DOI: 10.3969/j.issn.1001-5256.2023.07.024
Research funding:

National Natural Science Foundation of China (82104655)

More Information
  • Corresponding author: WANG Dong, wangdong@cdutcm.edu.cn (ORCID: 0000-0002-6387-9169)
  • Received Date: 2022-10-22
  • Accepted Date: 2022-11-29
  • Published Date: 2023-07-20
  • Nonalcoholic steatohepatitis (NASH) is an important part of the exacerbation of nonalcoholic fatty liver disease (NAFLD), and inflammation and liver damage are important pathological features of this stage. As one of the pathogenic mechanisms of NASH, lipotoxicity can regulate liver inflammation and hepatocyte apoptosis through multiple pathways. Therefore, this article elaborates on the specific regulatory mechanism of lipotoxicity on NASH from the two aspects of inflammation and hepatocyte apoptosis, which involves a variety of liver nonparenchymal cells and various signaling pathways such as JNK, NF-κB, and caspase-mediated cell apoptosis, so as to provide new ideas for the diagnosis and treatment of NASH in clinical practice.

     

  • [1]
    POVSIC M, WONG OY, PERRY R, et al. A structured literature review of the epidemiology and disease burden of non-alcoholic steatohepatitis (NASH)[J]. Adv Ther, 2019, 36(7): 1574-1594. DOI: 10.1007/s12325-019-00960-3.
    [2]
    YOUNOSSI ZM, STEPANOVA M, RAFIQ N, et al. Nonalcoholic steatofibrosis independently predicts mortality in nonalcoholic fatty liver disease[J]. Hepatol Commun, 2017, 1(5): 421-428. DOI: 10.1002/hep4.1054.
    [3]
    TILG H, ADOLPH TE, MOSCHEN AR. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: revisited after a decade[J]. Hepatology, 2021, 73(2): 833-842. DOI: 10.1002/hep.31518.
    [4]
    MARRA F, SVEGLIATI-BARONI G. Lipotoxicity and the gut-liver axis in NASH pathogenesis[J]. J Hepatol, 2018, 68(2): 280-295. DOI: 10.1016/j.jhep.2017.11.014.
    [5]
    RUI L. Energy metabolism in the liver[J]. Compr Physiol, 2014, 4(1): 177-197. DOI: 10.1002/cphy.c130024.
    [6]
    YAMAGUCHI K, YANG L, MCCALL S, et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis[J]. Hepatology, 2007, 45(6): 1366-1374. DOI: 10.1002/hep.21655.
    [7]
    IOANNOU GN. The role of cholesterol in the pathogenesis of NASH[J]. Trends Endocrinol Metab, 2016, 27(2): 84-95. DOI: 10.1016/j.tem.2015.11.008.
    [8]
    NEUSCHWANDER-TETRI BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites[J]. Hepatology, 2010, 52(2): 774-788. DOI: 10.1002/hep.23719.
    [9]
    WANG YJ, BIAN Y, LUO J, et al. Cholesterol and fatty acids regulate cysteine ubiquitylation of ACAT2 through competitive oxidation[J]. Nat Cell Biol, 2017, 19(7): 808-819. DOI: 10.1038/ncb3551.
    [10]
    GAN LT, van ROOYEN DM, KOINA ME, et al. Hepatocyte free cholesterol lipotoxicity results from JNK1-mediated mitochondrial injury and is HMGB1 and TLR4-dependent[J]. J Hepatol, 2014, 61(6): 1376-1384. DOI: 10.1016/j.jhep.2014.07.024.
    [11]
    HORN CL, MORALES AL, SAVARD C, et al. Role of cholesterol-associated steatohepatitis in the development of NASH[J]. Hepatol Commun, 2022, 6(1): 12-35. DOI: 10.1002/hep4.1801.
    [12]
    LIPKE K, KUBIS-KUBIAK A, PIWOWAR A. Molecular mechanism of lipotoxicity as an interesting aspect in the development of pathological states-current view of knowledge[J]. Cells, 2022, 11(5): 844. DOI: 10.3390/cells11050844.
    [13]
    LEAMY AK, EGNATCHIK RA, YOUNG JD. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease[J]. Prog Lipid Res, 2013, 52(1): 165-174. DOI: 10.1016/j.plipres.2012.10.004.
    [14]
    PAGADALA M, KASUMOV T, MCCULLOUGH AJ, et al. Role of ceramides in nonalcoholic fatty liver disease[J]. Trends Endocrinol Metab, 2012, 23(8): 365-371. DOI: 10.1016/j.tem.2012.04.005.
    [15]
    SIMON J, OURO A, ALA-IBANIBO L, et al. Sphingolipids in non-alcoholic fatty liver disease and hepatocellular carcinoma: ceramide turnover[J]. Int J Mol Sci, 2019, 21(1): 40. DOI: 10.3390/ijms21010040.
    [16]
    KOYAMA Y, BRENNER DA. Liver inflammation and fibrosis[J]. J Clin Invest, 2017, 127(1): 55-64. DOI: 10.1172/JCI88881.
    [17]
    SCHUSTER S, CABRERA D, ARRESE M, et al. Triggering and resolution of inflammation in NASH[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(6): 349-364. DOI: 10.1038/s41575-018-0009-6.
    [18]
    LEROUX A, FERRERE G, GODIE V, et al. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis[J]. J Hepatol, 2012, 57(1): 141-149. DOI: 10.1016/j.jhep.2012.02.028.
    [19]
    WENFENG Z, YAKUN W, DI M, et al. Kupffer cells: increasingly significant role in nonalcoholic fatty liver disease[J]. Ann Hepatol, 2014, 13(5): 489-495.
    [20]
    KHOMICH O, IVANOV AV, BARTOSCH B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis[J]. Cells, 2019, 9(1): 24. DOI: 10.3390/cells9010024.
    [21]
    BOUREBABA N, MARYCZ K. Hepatic stellate cells role in the course of metabolic disorders development-A molecular overview[J]. Pharmacol Res, 2021, 170: 105739. DOI: 10.1016/j.phrs.2021.105739.
    [22]
    MIYAO M, KOTANI H, ISHIDA T, et al. Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression[J]. Lab Invest, 2015, 95(10): 1130-1144. DOI: 10.1038/labinvest.2015.95.
    [23]
    MATSUMOTO M, ZHANG J, ZHANG X, et al. The NOX1 isoform of NADPH oxidase is involved in dysfunction of liver sinusoids in nonalcoholic fatty liver disease[J]. Free Radic Biol Med, 2018, 115: 412-420. DOI: 10.1016/j.freeradbiomed.2017.12.019.
    [24]
    NASIRI-ANSARI N, ANDROUTSAKOS T, FLESSA CM, et al. Endothelial cell dysfunction and nonalcoholic fatty liver disease (NAFLD): A concise review[J]. Cells, 2022, 11(16): 2511. DOI: 10.3390/cells11162511.
    [25]
    GENG Y, FABER KN, de MEIJER VE, et al. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease?[J]. Hepatol Int, 2021, 15(1): 21-35. DOI: 10.1007/s12072-020-10121-2.
    [26]
    HIRSOVA P, GORES GJ. Death receptor-mediated cell death and proinflammatory signaling in nonalcoholic steatohepatitis[J]. Cell Mol Gastroenterol Hepatol, 2015, 1(1): 17-27. DOI: 10.1016/j.jcmgh.2014.11.005.
    [27]
    MUSSO G, CASSADER M, PASCHETTA E, et al. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis[J]. Gastroenterology, 2018, 155(2): 282-302. e8. DOI: 10.1053/j.gastro.2018.06.031.
    [28]
    HETZ C, ZHANG K, KAUFMAN RJ. Mechanisms, regulation and functions of the unfolded protein response[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 421-438. DOI: 10.1038/s41580-020-0250-z.
    [29]
    MOTA M, BANINI BA, CAZANAVE SC, et al. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease[J]. Metabolism, 2016, 65(8): 1049-1061. DOI: 10.1016/j.metabol.2016.02.014.
    [30]
    SVEGLIATI-BARONI G, PIERANTONELLI I, TORQUATO P, et al. Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease[J]. Free Radic Biol Med, 2019, 144: 293-309. DOI: 10.1016/j.freeradbiomed.2019.05.029.
    [31]
    HAUCK AK, BERNLOHR DA. Oxidative stress and lipotoxicity[J]. J Lipid Res, 2016, 57(11): 1976-1986. DOI: 10.1194/jlr.R066597.
    [32]
    XIAO M, ZHONG H, XIA L, et al. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria[J]. Free Radic Biol Med, 2017, 111: 316-327. DOI: 10.1016/j.freeradbiomed.2017.04.363.
    [33]
    SABIO G, DAVIS RJ. TNF and MAP kinase signalling pathways[J]. Semin Immunol, 2014, 26(3): 237-245. DOI: 10.1016/j.smim.2014.02.009.
    [34]
    YANG YM, KIM SY, SEKI E. Inflammation and liver cancer: molecular mechanisms and therapeutic targets[J]. Semin Liver Dis, 2019, 39(1): 26-42. DOI: 10.1055/s-0038-1676806.
    [35]
    CAZANAVE SC, MOTT JL, BRONK SF, et al. Death receptor 5 signaling promotes hepatocyte lipoapoptosis[J]. J Biol Chem, 2011, 286(45): 39336-39348. DOI: 10.1074/jbc.M111.280420.
    [36]
    MALHI H, GUICCIARDI ME, GORES GJ. Hepatocyte death: a clear and present danger[J]. Physiol Rev, 2010, 90(3): 1165-1194. DOI: 10.1152/physrev.00061.2009.
    [37]
    AKAZAWA Y, NAKAO K. To die or not to die: death signaling in nonalcoholic fatty liver disease[J]. J Gastroenterol, 2018, 53(8): 893-906. DOI: 10.1007/s00535-018-1451-5.
    [38]
    WANDRER F, LIEBIG S, MARHENKE S, et al. TNF-Receptor-1 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice[J]. Cell Death Dis, 2020, 11(3): 212. DOI: 10.1038/s41419-020-2411-6.
  • Relative Articles

    [1]Yunchong WU, Yanyan YANG, Chuan LI, Xiaohuan WU, Shide LIN. Role of inflammatory cytokines in disorder of glucose metabolism in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 2024, 40(9): 1886-1890. doi: 10.12449/JCH240926
    [2]Jianan ZHAO, Jinghua PENG, Ping LIU, Yiyang HU. Effect of Cordyceps polysaccharides on hepatocyte apoptosis induced by tumor necrosis factor-α[J]. Journal of Clinical Hepatology, 2021, 37(6): 1368-1372. doi: 10.3969/j.issn.1001-5256.2021.06.029
    [3]Zhen TIAN, Lisha WANG, Naijuan YAO, Yingren ZHAO, Litao RUAN. Role and mechanism of hepatic stellate cells in the pathogenesis of mice with acute-on-chronic liver failure[J]. Journal of Clinical Hepatology, 2021, 37(3): 642-647. doi: 10.3969/j.issn.1001-5256.2021.03.027
    [4]Lihui ZHANG, Minghao LIU, Wenxia ZHAO. Role of lipotoxicity in the development and progression of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatology, 2021, 37(2): 463-466. doi: 10.3969/j.issn.1001-5256.2021.02.045
    [5]Qu Yao, Zhang Wei. Role of cell apoptosis in the pathogenesis of primary biliary cholangitis[J]. Journal of Clinical Hepatology, 2019, 35(6): 1397-1400. doi: 10.3969/j.issn.1001-5256.2019.06.049
    [6]Gong Jing, Jie XinKe. Effect of endoplasmic reticulum stress and autophagy on hepatocyte apoptosis[J]. Journal of Clinical Hepatology, 2019, 35(12): 2828-2832. doi: 10.3969/j.issn.1001-5256.2019.12.041
    [7]Gao Si, Zhao XiangXuan, Lu ZaiMing. Role of cell apoptosis regulated by P53 in treatment of hepatocellular carcinoma[J]. Journal of Clinical Hepatology, 2017, 33(7): 1373-1376. doi: 10.3969/j.issn.1001-5256.2017.07.038
    [8]Zhang ChaoYa, Zhao XiangXuan, Lu ZaiMing, Guo QiYong. Research advances in sorafenib- induced apoptotic signaling pathways in liver cancer cells[J]. Journal of Clinical Hepatology, 2016, 32(4): 816-820. doi: 10.3969/j.issn.1001-5256.2016.04.048
    [9]Pan LiuLan, Jia ShengNan, Ma JingTing, Tai JingHua, Jin ZhenJing. Effect of decoy receptor 3 gene on hepatocyte apoptosis[J]. Journal of Clinical Hepatology, 2016, 32(7): 1330-1333. doi: 10.3969/j.issn.1001-5256.2016.07.023
    [10]Wang YingChun, Kong WeiZong, Jin QingMei, Chen Juan. Effect of salvianolic acid B on hepatocyte apoptosis in rats with nonalcoholic steatohepatitis[J]. Journal of Clinical Hepatology, 2014, 30(12): 1325-1329. doi: 10.3969/j.issn.1001-5256.2014.12.022
    [11]Pan YuanWei, Ping Jian, Xu LieMing. Research advances in main signaling pathways for inducing apoptosis of activated hepatic stellate cells[J]. Journal of Clinical Hepatology, 2014, 30(2): 182-185. doi: 10.3969/j.issn.1001-5256.2014.02.021
    [12]Wang XiXun, Jiang LiXin, Wang JingLin, Liang Jing, Zhai HuiYuan, Xia XianMing. Experimental study on hepatocyte apoptosis induced by acute biliary tract infection[J]. Journal of Clinical Hepatology, 2014, 30(11): 1164-1168. doi: 10.3969/j.issn.1001-5256.2014.11.018
    [13]Weng ShanGeng, Xu ChangGuo, Sun Ying, Shi Zheng, Lin LiJuan. Study on the apoptosis of rat hepatic stellate cells induced by kapamycin[J]. Journal of Clinical Hepatology, 2012, 28(3): 219-222.
    [14]Qiao ChunPing, Chen YueXiang. Advances in study of the relationship between apoptosis and alcoholic liver disease[J]. Journal of Clinical Hepatology, 2012, 28(5): 386-390.
    [15]Cheng Rui, Cai XinRan, Zhou HaoHui, Han ShengHua, Zhu JinHai, Chen HuiXing, Chen YanLing. Omega-3 polyunsaturated fatty acids inhibit inflammation during the early stage of acute pancreatitis[J]. Journal of Clinical Hepatology, 2012, 28(8): 598-602.
    [16]Zhang LiLi, Guo XiaoHong, Liu LiXin, Zhang QianQian. IGFBPrP1 siRNA induced apoptosis in rat hepatic stellate cells and its mechanism[J]. Journal of Clinical Hepatology, 2011, 27(9): 965-969+979.
    [17]Zhang Biao, Sui Tao, Yu XiuYing, Cao YongXian, Yao Yuan, He Hong. Significance of detecting apoptosis of PBMC and cytokine of supernatant induced by PHA in chronic hepatitis B[J]. Journal of Clinical Hepatology, 2004, 20(3): 138-140.
  • Cited by

    Periodical cited type(2)

    1. 马宏涛,李璐辰,刘汝杰,李润东,王磊. 水飞蓟宾联合阿昔莫司口服治疗非酒精性脂肪性肝炎的疗效及安全性观察. 山东医药. 2024(14): 49-52 .
    2. 肖炜,王欣鑫,张坪,周斌,唐奇志,李世香. 从病因病机共性探讨2型糖尿病、非酒精性脂肪性肝病与高尿酸血症内在联系. 中国中医药图书情报杂志. 2024(06): 13-17 .

    Other cited types(2)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 53.5 %FULLTEXT: 53.5 %META: 40.6 %META: 40.6 %PDF: 5.9 %PDF: 5.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %其他: 1.0 %其他: 1.0 %Kao-sung: 0.2 %Kao-sung: 0.2 %Toyoake: 0.1 %Toyoake: 0.1 %[]: 0.1 %[]: 0.1 %上海: 5.6 %上海: 5.6 %丽水: 0.1 %丽水: 0.1 %佛山: 0.5 %佛山: 0.5 %保定: 0.1 %保定: 0.1 %兰州: 0.2 %兰州: 0.2 %北京: 4.9 %北京: 4.9 %南京: 0.5 %南京: 0.5 %南充: 0.1 %南充: 0.1 %南宁: 0.3 %南宁: 0.3 %南昌: 0.2 %南昌: 0.2 %卡纳塔克: 0.2 %卡纳塔克: 0.2 %厦门: 0.4 %厦门: 0.4 %台北: 0.1 %台北: 0.1 %台州: 0.9 %台州: 0.9 %吉林: 0.4 %吉林: 0.4 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.2 %天津: 0.2 %太原: 0.5 %太原: 0.5 %威海: 0.1 %威海: 0.1 %孝感: 0.2 %孝感: 0.2 %孟买: 0.2 %孟买: 0.2 %宣城: 0.1 %宣城: 0.1 %常州: 0.2 %常州: 0.2 %常德: 0.1 %常德: 0.1 %广州: 1.5 %广州: 1.5 %弗吉: 0.1 %弗吉: 0.1 %张家口: 2.1 %张家口: 2.1 %徐州: 0.1 %徐州: 0.1 %成都: 0.9 %成都: 0.9 %新德里: 0.1 %新德里: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.3 %昆明: 0.3 %晋中: 0.1 %晋中: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.4 %杭州: 1.4 %武汉: 1.5 %武汉: 1.5 %水原: 0.1 %水原: 0.1 %沈阳: 0.3 %沈阳: 0.3 %沧州: 0.1 %沧州: 0.1 %法尔肯施泰因: 1.8 %法尔肯施泰因: 1.8 %泰州: 0.3 %泰州: 0.3 %泸州: 0.1 %泸州: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.5 %洛阳: 0.5 %济南: 0.2 %济南: 0.2 %济宁: 0.2 %济宁: 0.2 %海口: 0.4 %海口: 0.4 %海得拉巴: 0.4 %海得拉巴: 0.4 %淄博: 0.2 %淄博: 0.2 %深圳: 0.1 %深圳: 0.1 %湖州: 0.4 %湖州: 0.4 %湘潭: 0.1 %湘潭: 0.1 %湛江: 0.1 %湛江: 0.1 %漯河: 0.2 %漯河: 0.2 %牡丹江: 0.2 %牡丹江: 0.2 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %红河: 0.1 %红河: 0.1 %纽约: 0.1 %纽约: 0.1 %罗奥尔凯埃: 0.1 %罗奥尔凯埃: 0.1 %芒廷维尤: 39.1 %芒廷维尤: 39.1 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.3 %苏州: 0.3 %苏拉卡尔塔: 0.2 %苏拉卡尔塔: 0.2 %莫斯科: 0.1 %莫斯科: 0.1 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.1 %衡阳: 0.1 %衢州: 1.0 %衢州: 1.0 %襄阳: 0.1 %襄阳: 0.1 %西宁: 8.2 %西宁: 8.2 %西安: 1.3 %西安: 1.3 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.3 %贵阳: 0.3 %赣州: 0.3 %赣州: 0.3 %赤峰: 0.1 %赤峰: 0.1 %运城: 1.0 %运城: 1.0 %连云港: 0.1 %连云港: 0.1 %通辽: 0.1 %通辽: 0.1 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.6 %郑州: 0.6 %重庆: 0.6 %重庆: 0.6 %铜仁: 0.1 %铜仁: 0.1 %锦州: 0.1 %锦州: 0.1 %长春: 1.0 %长春: 1.0 %长沙: 1.4 %长沙: 1.4 %长治: 0.1 %长治: 0.1 %阿什本: 0.8 %阿什本: 0.8 %阿坝: 0.1 %阿坝: 0.1 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.1 %鞍山: 0.1 %鸡西: 0.1 %鸡西: 0.1 %黄石: 0.2 %黄石: 0.2 %其他其他Kao-sungToyoake[]上海丽水佛山保定兰州北京南京南充南宁南昌卡纳塔克厦门台北台州吉林呼和浩特哈尔滨嘉兴天津太原威海孝感孟买宣城常州常德广州弗吉张家口徐州成都新德里无锡昆明晋中朝阳杭州武汉水原沈阳沧州法尔肯施泰因泰州泸州洛杉矶洛阳济南济宁海口海得拉巴淄博深圳湖州湘潭湛江漯河牡丹江石家庄福州红河纽约罗奥尔凯埃芒廷维尤芝加哥苏州苏拉卡尔塔莫斯科衡水衡阳衢州襄阳西宁西安诺沃克贵阳赣州赤峰运城连云港通辽邯郸郑州重庆铜仁锦州长春长沙长治阿什本阿坝青岛鞍山鸡西黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (419) PDF downloads(61) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return