中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

Mild hypothermia exerts a protective effect against hepatic ischemia-reperfusion injury in rats by activating the PI3K/Akt signaling pathway

DOI: 10.3969/j.issn.1001-5256.2019.04.027
Research funding:

 

  • Received Date: 2018-10-17
  • Published Date: 2019-04-20
  • Objective To investigate the protective mechanism of mild hypothermia pretreatment against hepatic ischemia-reperfusion injury in rats. Methods A total of 40 male Sprague-Dawley rats were randomly divided into sham-operation group ( Sham group) , hepatic ischemia-reperfusion injury group ( HIRI group) , mild hypothermia group ( MH group) , and mild hypothermia + LY294002 group ( MH +LY group) , with 10 rats in each group. Serum and liver tissue samples were collected at 3, 6, 12, and 24 hours of hepatic ischemia-reperfusion. Western blotting was used to measure the protein expression of phosphoinositide 3-kinase ( PI3 K) , phosphorylated PI3 K ( p-PI3 K) , protein kinase-B ( Akt) , and phosphorylated Akt ( p-Akt, Ser308) in liver tissue. TUNEL and Western blotting were used to measure cell apoptosis and expression of apoptosis-related proteins in liver tissue. ELISA was used to measure the levels of superoxide dismutase ( SOD) , glutathione peroxidase ( GSH-Px) , and malondialdehyde ( MDA) in liver tissue. An automatic biochemical analyzer was used to measure the activities of alanine aminotransferase ( ALT) and aspartate aminotransferase ( AST) in serum. A one-way analysis of variance was used for comparison between multiple groups, and the SNK-q test was used for further comparison between two groups.Results The HIRI group had significantly lower relative expression levels of p-PI3 K and p-Akt than the Sham group ( q = 5. 217 and5. 456, both P < 0. 01) , and the MH group had significantly higher relative expression levels of p-PI3 K and p-Akt in liver tissue than the HIRI group ( q = 10. 434 and 14. 116, both P < 0. 01) . At 3, 6, 12, and 24 hours of hepatic ischemia-reperfusion, the HIRI group, the MH group, and the MH + LY group had significantly higher activities of AST and ALT in serum than the Sham group ( all P < 0. 001) .TUNEL staining showed that the HIRI group had a significantly higher proportion of apoptotic cells in liver tissue than the Sham group ( 42. 25% ± 3. 50% vs 3. 21% ± 0. 5%, q = 10. 187, P < 0. 01) . Compared with the HIRI group, the MH group had a significant reduction in the proportion of apoptotic cells ( q = 7. 784, P < 0. 01) , while there was no significant difference in the proportion of apoptotic cells between the HIRI group and the MH + LY group ( 42. 25% ± 3. 50% vs 38. 19% ± 2. 8%, q = 1. 059, P > 0. 05) . Western blotting showed that compared with the Sham group, the HIRI group had a significant reduction in the expression of the anti-apoptotic protein Bcl-2 ( q =2. 101, P < 0. 05) and significant increases in the expression of the pro-apoptotic proteins Bax, Fas, and Fasl ( q = 11. 016、4. 735, and10. 201, all P < 0. 01) , and the regulatory effect of HIRI on apoptotic-related proteins was downregulated by mild hypothermia treatment.According to the results of oxidative indices, the HIRI group, the MH group, and the MH + LY group had significantly lower expression of SOD and GSH-Px and significantly higher expression of MDA in liver tissue than the Sham group ( all P < 0. 05) ; compared with the HIRI group, the MH group had significantly higher expression of SOD and GSH-Px ( q = 2. 894 and 2. 731, both P < 0. 05) and significantly lower expression of MDA ( q = 5. 888, P < 0. 05) in liver tissue. In addition, mild hypothermia + LY294002 treatment significantly reduced the regulatory effect on the expression of SOD, MDA, and GSH-Px in liver tissue in the MH group ( q = 2. 999, 2. 944, and 2. 620, all P < 0. 05) . Conclusion MH exerts a protective effect against HIRI in rats, possibly by activating the PI3 K/Akt pathway to downregulate hepatocyte apoptosis and enhance antioxidant capacity in vivo.

     

  • [1]SUN P, LU YX, CHENG D, et al.Monocyte Chemoattractant protein-induced protein 1 targets hypoxia-inducible factor1αto protect against hepatic ischemia/reperfusion injury[J].Hepatology, 2018, 68 (6) :2359-2375.
    [2]FRATTE S, GENDRAULT JL, STEFFAN AM, et al.Comparative ultrastructural study of rat livers preserved in Euro-Collins or University of Wisconsin solution[J].Hepatology, 1991, 13 (6) :1173-1180.
    [3]DAI HB, XU MM, LV J, et al.Mild hypothermia combined with hydrogen sulfide treatment during resuscitation reduces hippocampal neuron apoptosis via NR2A, NR2B, and PI3K-Akt signaling in a rat model of cerebral ischemia-reperfusion injury[J].Mol Neurobiol, 2016, 53 (7) :4865-4873.
    [4]CHENG BC, HUANG HS, CHAO CM, et al.Hypothermia may attenuate ischemia/reperfusion-induced cardiomyocyte death by reducing autophagy[J].Int J Cardiol, 2013, 168 (3) :2064-2069.
    [5]TSUCHIYA D, HONG S, SUH SW, et al.Mild hypothermia reduces zinc translocation, neuronal cell death, and mortality after transient global ischemia in mice[J].J Cereb Blood Flow Metab, 2002, 22 (10) :1231-1238.
    [6]SHRIVASTAVA S, JEENGAR MK, REDDY VS, et al.Anticancer effect of celastrol on human triple negative breast cancer:Possible involvement of oxidative stress, mitochondrial dysfunction, apoptosis and PI3K/Akt pathways[J].Exp Mol Pathol, 2015, 98 (3) :313-327.
    [7]WANG XM, YAO M, LIU SX, et al.Interplay between the Notch and PI3K/Akt pathways in high glucose-induced podocyte apoptosis[J].Am J Physiol Renal Physiol, 2014, 306 (2) :F205-F213.
    [8]CHEN Y, LIU G, HE F, et al.MicroRNA 375 modulates hyperglycemia-induced enteric glial cell apoptosis and diabetes-induced gastrointestinal dysfunction by targeting Pdk1 and repressing PI3K/Akt pathway[J].Sci Rep, 2018, 8 (1) :12681.
    [9]KOHLI V, SELZNER M, MADDEN JF, et al.Endothelial cell and hepatocyte deaths occur by apoptosis after ischemiareperfusion injury in the rat liver[J].Transplantation, 1999, 67 (8) :1099-1105.
    [10]GRANGER DN, KVIETYS PR.Reperfusion injury and reactive oxygen species:The evolution of a concept[J].Redox Biol, 2015, 6:524-551.
    [11]PELL VR, SPIROSKI AM, MULVEY J, et al.Ischemic preconditioning protects against cardiac ischemia reperfusion injury without affecting succinate accumulation or oxidation[J].JMol Cell Cardiol, 2018, 123:88-91.
    [12]YANG F, WANG S, LIU Y, et al.IRE1alpha aggravates ischemia reperfusion injury of fatty liver by regulating phenotypic transformation of kupffer cells[J].Free Radic Biol Med, 2018, 124:395-407.
    [13]BEHRENDS M, HIROSE R, SERKOVA NJ, et al.Mild hypothermia reduces the inflammatory response and hepatic ischemia/reperfusion injury in rats[J].Liver Int, 2006, 26 (6) :734-741.
    [14]ZHU P, ZHAO MY, LI XH, et al.Effect of low temperatures on BAX and BCL2 proteins in rats with spinal cord ischemia reperfusion injury[J].Genet Mol Res, 2015, 14 (3) :10490-[[[[[[[[10499.
    [15]SANTOS EB, KOFF WJ, GREZZANA FILHO TDE J, et al.Oxidative stress evaluation of ischemia and reperfusion in kidneys under various degrees of hypothermia in rats[J].Acta Cir Bras, 2013, 28 (8) :568-573.
    [16]ZHOU T, LIANG L, LIANG Y, et al.Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux[J].Exp Cell Res, 2017, 358 (2) :147-160.
    [17]YANG YF, ZHANG MF, TIAN QH, et al.SPAG5 interacts with CEP55 and exerts oncogenic activities via PI3K/AKT pathway in hepatocellular carcinoma[J].Mol Cancer, 2018, 17 (1) :117.
    [18]WEI L, CHEN Q, GUO A, et al.Asiatic acid attenuates CCl4-induced liver fibrosis in rats by regulating the PI3K/AKT/m TOR and Bcl-2/Bax signaling pathways[J].Int Immunopharmacol, 2018, 60:1-8.
    [19]YIN W, HAN J, ZHANG Z, et al.Aloperine protects mice against bleomycin-induced pulmonary fibrosis by attenuating fibroblast proliferation and differentiation[J].Sci Rep, 2018, 8 (1) :6265.
    [20]LI Z, ZHAO F, CAO Y, et al.DHA attenuates hepatic ischemia reperfusion injury by inhibiting pyroptosis and activating PI3K/Akt pathway[J].Eur J Pharmacol, 2018, 835:1-10.
    [21]OUYANG ZH, WANG WJ, YAN YG, et al.The PI3K/Akt pathway:A critical player in intervertebral disc degeneration[J].Oncotarget, 2017, 8 (34) :57870-57881.
    [22]XIAO Q, YE QF, WANG W, et al.Mild hypothermia pretreatment protects hepatocytes against ischemia reperfusion injury via down-regulating miR-122 and IGF-1R/AKT pathway[J].Cryobiology, 2017, 75:100-105.
  • Relative Articles

    [1]Jiaxin LIANG, Baolin XU, Yu CHENG, Yong WEI. Role of ferroptosis in hepatic ischemia-reperfusion injury[J]. Journal of Clinical Hepatology, 2024, 40(8): 1693-1698. doi: 10.12449/JCH240830
    [2]Jinrui ZHANG, Hao WU, Yi BAI, Yamin ZHANG. Effect of trimetazidine on a rat model of bile duct ischemia-reperfusion injury and its mechanism[J]. Journal of Clinical Hepatology, 2022, 38(11): 2546-2550. doi: 10.3969/j.issn.1001-5256.2022.11.021
    [3]Zhen LI, Ke WANG, Kaiqiang WANG, Kexian YU. Research advances in targeting autophagy to alleviate hepatic ischemia-reperfusion injury[J]. Journal of Clinical Hepatology, 2022, 38(1): 210-214. doi: 10.3969/j.issn.1001-5256.2022.01.037
    [4]Zhen LI, Yihao ZENG, Ke WANG, Kaiqiang WANG, Kexian YU. Research advances in the prevention and treatment of hepatic ischemia-reperfusion injury with traditional Chinese medicine components[J]. Journal of Clinical Hepatology, 2022, 38(2): 471-476. doi: 10.3969/j.issn.1001-5256.2022.02.044
    [5]Yangyang WANG, Xueying PENG, Jie MENG, Boran AN, Wenjuan HE, Sucai LU, Yan CHEN, Liwen KONG, Chuan NIU, Cong LIU, Wei HUANG, Yingjian HOU. Protective effect of resolvin D1 pretreatment in a rat model of hepatic ischemia-reperfusion injury and its mechanism[J]. Journal of Clinical Hepatology, 2021, 37(6): 1373-1378. doi: 10.3969/j.issn.1001-5256.2021.06.030
    [6]Mi Kai, Huang Rui. Protective effect of urolithin A pretreatment in a rat model of hepatic ischemia-reperfusion injury[J]. Journal of Clinical Hepatology, 2020, 36(8): 1783-1787. doi: 10.3969/j.issn.1001-5256.2020.08.021
    [7]Zhang ShiLong, Peng CiJun, Feng ZanJie, Gao WeiDong, Duan YuLing, Fan GuoXin. Mechanism of action of microRNA in the regulation of hepatic ischemia-reperfusion injury[J]. Journal of Clinical Hepatology, 2019, 35(7): 1629-1631. doi: 10.3969/j.issn.1001-5256.2019.07.045
    [8]Li Yang, Shu DeJun, Peng CiJun, Feng ZanJie, Mei Yong, Xiong Kun. Effect of erythropoietin on the mRNA expression of apoptosis genes bcl-2 and bax in rats with fatty liver disease after hepatic ischemia-reperfusion injury[J]. Journal of Clinical Hepatology, 2019, 35(1): 157-160. doi: 10.3969/j.issn.1001-5256.2019.01.030
    [9]Wang JingYuan, Li ShengWei, Gong JianPing, Jiang DeQuan. Role of silent information regulator 1 in hepatic ischemia-reperfusion injury[J]. Journal of Clinical Hepatology, 2019, 35(6): 1388-1391. doi: 10.3969/j.issn.1001-5256.2019.06.047
    [10]Luo YanQing, Feng ChunLin, Mei Yong, Du Chao, Ceng PengFei, Wang Jun, Wang GuoXing, Zhao Liang, Leng Kai. Protective effect of hepatocyte growth-promoting factor against liver ischemia-reperfusion injury in rats and its mechanism of action[J]. Journal of Clinical Hepatology, 2019, 35(2): 364-367. doi: 10.3969/j.issn.1001-5256.2019.02.024
    [11]Gao WeiDong, Feng ZanJie, Peng CiJun, Li Yang, Wu Bo, Geng Xin. Association between high-mobility group box B1 and hepatic ischemia-reperfusion injury[J]. Journal of Clinical Hepatology, 2019, 35(3): 669-671. doi: 10.3969/j.issn.1001-5256.2019.03.049
    [12]Yang LongCan, Zhang XuYang, Pan NingBo, Yu Xi, Li JiWei, Zhang Ying. Effect of rapamycin on the expression of autophagy-related proteins Unc-51 like autophagy activating kinase 1 and microtubule-associated protein 1 light chain 3 in hepatic ischemia-reperfusion injury and its significance[J]. Journal of Clinical Hepatology, 2019, 35(10): 2261-2265. doi: 10.3969/j.issn.1001-5256.2019.10.026
    [13]Chen BaoHe, Li WenMei. Effect of ulinastatin combined with ischemic preconditioning on hepatic ischemia-reperfusion injury in rats[J]. Journal of Clinical Hepatology, 2018, 34(2): 368-372. doi: 10.3969/j.issn.1001-5256.2018.02.030
    [14]Ren ZhiZhong, Zhang YueWei. Advances in the application of GPC3 in treatment of liver cancer[J]. Journal of Clinical Hepatology, 2017, 33(7): 1369-1372. doi: 10.3969/j.issn.1001-5256.2017.07.037
    [15]Xu Feng, Liu XiaoLin, Wang Chao, Dai ChaoLiu. Protective effect of prostaglandin E1 pretreatment against liver ischemia-reperfusion injury in rats with cholestasis[J]. Journal of Clinical Hepatology, 2017, 33(5): 899-904. doi: 10.3969/j.issn.1001-5256.2017.05.022
    [16]Wang QingQing, Zhao Xin, Chen YuChao, Dou Jian. Research advances in mechanisms and intervention of hepatic ischemia-reperfusion injury[J]. Journal of Clinical Hepatology, 2016, 32(6): 1225-1229. doi: 10.3969/j.issn.1001-5256.2016.06.049
    [17]Chen XuXiao, Chen YongJun. PI3K / Akt / mTOR signaling pathway and malignant hepatobiliary tumors[J]. Journal of Clinical Hepatology, 2015, 31(6): 989-991. doi: 10.3969/j.issn.1001-5256.2015.06.040
    [18]Wu ZhangHui, Shen Min, Li Long, Wei Jia. Association between PI3K/Akt/mTOR/p70S6K signaling pathway and hepatic fibrosis[J]. Journal of Clinical Hepatology, 2015, 31(11): 1928-1932. doi: 10.3969/j.issn.1001-5256.2015.11.043
    [19]Wu Gang, Zheng Jie, Hu GuoXin, Peng YanZhong. Role of liver nonparenchymal cells in hepatic ischemia-reperfusion injury[J]. Journal of Clinical Hepatology, 2014, 30(12): 1366-1369. doi: 10.3969/j.issn.1001-5256.2014.12.033
    [20]Gao Jun, Chen Gong, Lu: Long. Protective role and immunoregulatory effect of CXCR3 in hepatic ischemia- reperfusion injury[J]. Journal of Clinical Hepatology, 2014, 30(8): 790-794. doi: 10.3969/j.issn.1001-5256.2014.08.023
  • Cited by

    Periodical cited type(6)

    1. 王磊,孙杨,孙悦,李嘉晨,刘莹,刘洪庚,刘雪瑞,王玉明. 基于UPLC-Q-TOF-MS和网络药理学的雷公藤-甘草配伍减毒作用机制研究. 中国处方药. 2024(12): 1-11 .
    2. 张福诚,李鹏,张才,杨隆恩,黄城益,张永平,宋采. 海参磷脂对慢性应激诱导小鼠抑郁样行为的影响. 广东海洋大学学报. 2020(02): 83-88 .
    3. 黄蕾,杨全伟,夏俊锋,刘新国. 鼠麴草醇提物对大鼠肝脏缺血再灌注损伤的保护作用及机制研究. 中国药师. 2020(11): 2114-2117+2122 .
    4. 李桂梅,谢秀峰. 麝香保心丸配合强化抗血小板治疗对急性心肌梗死合并糖尿病患者疗效研究. 创伤与急危重病医学. 2020(06): 426-430 .
    5. 吴志殿,谢承志,黎金国,吴维雄,于航. 亚低温联合氯丙嗪对脑缺血再灌注损伤大鼠氧化应激反应的影响. 中西医结合心脑血管病杂志. 2020(24): 4158-4160 .
    6. 常江,余华,张晓乐,李俊玲. 毛蕊异黄酮对大鼠蛛网膜下腔出血后血脑屏障和氧化应激反应的影响. 吉林中医药. 2019(10): 1347-1350 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.7 %FULLTEXT: 8.7 %META: 87.7 %META: 87.7 %PDF: 3.7 %PDF: 3.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.9 %其他: 5.9 %其他: 0.7 %其他: 0.7 %China: 0.6 %China: 0.6 %India: 0.2 %India: 0.2 %Rochester: 0.2 %Rochester: 0.2 %Russian Federation: 0.2 %Russian Federation: 0.2 %[]: 0.6 %[]: 0.6 %上海: 2.9 %上海: 2.9 %凉山: 0.2 %凉山: 0.2 %北京: 6.3 %北京: 6.3 %南京: 0.2 %南京: 0.2 %南宁: 0.2 %南宁: 0.2 %合肥: 0.2 %合肥: 0.2 %吉林: 0.7 %吉林: 0.7 %哥伦布: 0.2 %哥伦布: 0.2 %广西南宁: 0.4 %广西南宁: 0.4 %张家口: 1.3 %张家口: 1.3 %杭州: 0.7 %杭州: 0.7 %格里利: 0.2 %格里利: 0.2 %武汉: 0.7 %武汉: 0.7 %珀斯: 0.6 %珀斯: 0.6 %芒廷维尤: 41.8 %芒廷维尤: 41.8 %芝加哥: 0.2 %芝加哥: 0.2 %莫斯科: 1.8 %莫斯科: 1.8 %西宁: 28.9 %西宁: 28.9 %诺丁汉: 0.4 %诺丁汉: 0.4 %诺沃克: 0.4 %诺沃克: 0.4 %通化: 0.7 %通化: 0.7 %长春: 1.7 %长春: 1.7 %长沙: 0.4 %长沙: 0.4 %长治: 0.2 %长治: 0.2 %阿克伦: 0.2 %阿克伦: 0.2 %阿姆斯特尔芬: 0.2 %阿姆斯特尔芬: 0.2 %青岛: 0.2 %青岛: 0.2 %其他其他ChinaIndiaRochesterRussian Federation[]上海凉山北京南京南宁合肥吉林哥伦布广西南宁张家口杭州格里利武汉珀斯芒廷维尤芝加哥莫斯科西宁诺丁汉诺沃克通化长春长沙长治阿克伦阿姆斯特尔芬青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1390) PDF downloads(284) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return